loT Week, Dublin 2022
Data Spaces: Common data models for Energy, Home, Mobility

Data Integration -A Path for More Flexibility Management at the Edge

Henrik Madsen, DTU Compute

(IFD projects: Flexible Energy Denmark + Cool Data) (EU/BRIDGE projects: ELEXIA + ARV + ebalanceplus)

The Challenge: Europe Fossil Free

Local Flexibility Characteristics vs Classical Markets

- Static -> Dynamic
- Deterministic -> Stochastic
- Linear -> Nonlinear
- Many power related services (voltage, frequency, balancing, spinning reserve, congestion, ...) -> Coordination + Hierarchy
- Speed / problem size -> Decomposition + Control Based Solutions
- Characterization of flexibility (bids) -> Flexibility Functions
- Requirements on user installations -> One-way communication

Temporal and Spatial Scales

A so-called *Smart-Energy Operating-System (SE-OS)* is suggested in order to develop, implement and test solutions (layers: data, models, optimization, control, communication) for *operating flexible electrical energy systems* at all scales including the Edge.

Smart-Energy OSThe Transformative Power of Digitalization

DENMARK

Flexibility Function

The *Flexibility Function (FF)* is a **MIMs for energy systems** used to characterizing flexibility and providing interface between local flexibility and high-level markets

Flexible Users and Penalty Signals

Center Denmark Control Room and Data Space

Spatial-Temporal thinking

Case study Summerhouses with a pool

Bidding Flexibility into Markets

• 4 hours intervals consisting of 30% of consumption with durations of 2 hours:

Bidding Flexibility into Markets

Solve FF(Price)=Bought Energy:

Summary

- An efficient implementation of the future weather-driven energy system calls for data-driven Smart Energy Systems
- Flexibility Functions are used to describe the flexibility everywhere
- Flexibility Functions are suggested as MIMs for Energy(MIMs = Minimal Interoperability Mechanisms)
- Flexibility Functions are key to unlock and manage flexibility at the Edge
- We need transparent, safe, fair and democratic solutions
- We have proposed to use methods based on Flexibility Functions for activating flexibility at all levels (via the Smart-Energy OS)
- We have indicated how use the Flexibility Functions for providing all type of grid services
- Implemented at the National Digitalization Hub, Center Denmark
- Savings in summerhouses: 20 30 pct CO2/Cost

