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Non-linear Model Predictive Control for Smart Heating of 
Buildings 

Christian Ankerstjerne Thilker1*, Hjörleifur G. Bergsteinsson, Peder Bacher1, Henrik Madsen1, Davide Calì1, and Rune 

G. Junker 

1Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 

Abstract. Smart and flexible operation of components in district heating systems can play a crucial role in 

integrating larger shares of renewable energy sources in energy systems. Buildings are one of the crucial 

components that will enable flexibility in the district heating by using intelligent operation. Recent work 

suggests that such improved operation at the same time can increase thermal comfort and lower economic 

costs. We have digitalised the heating system in a Danish school by adding IoT devices, such as smart 

thermostats and temperature sensors to demonstrate the possibilities of making buildings smart. Based on 

experimental data, this paper introduces a non-linear grey-box model of the thermal dynamics of the 

building. A non-linear model predictive control method is presented for the thermostatic set-point control 

of the building's radiators. Based on the building model and the control algorithm, simulation studies are 

carried out to show the flexibility potential of the building. When used for lowering the return temperature 

the results suggest that operational costs can be lowered by around 10% using predictive control. 

1 Introduction 

 Digitalisation of heating systems, i.e., through smart 

thermostats and indoor climate sensors, creates the 

possibility of making buildings smart by having data of 

the building heat dynamic. This, however, does not 

alone make the building (or the heating system) smart as 

it does not yet use the data to make the system efficient 

or flexible. Without smartness, the system is just data-

rich. The system becomes smart when it uses the data to 

e.g. lower some cost functions, that could be to lower 

the heating costs without violating thermal comfort or 

reduce heat consumption during peak hours (known as 

peak shaving). The data can be used to formulate models 

that describe the dynamics of the building climate. Such 

models enable the system to become smart using e.g. 

Model Predictive Control (MPC) [1]. MPC is a control 

method that minimises some predefined cost function 

while satisfying a set of constraints. MPC has become 

very popular for the heating, ventilation, and air-

conditioning sector in the past years as it makes the 

system smart by making it efficient and/or flexible [2] 

[3] [4]. The advantage of the MPC over other control 

methods is its ability to predict the future behaviour of 

the system. Thereby, the MPC can take weather 

predictions and future activities into account when 

optimising the manipulated variables (e.g., desire 

temperature in a room) of the system [5]. MPC setups 

usually run in a closed-loop where the controller gets 

feedback on how the system reacted to the latest input 

or disturbance. The MPC is based on a model (e.g. a set 

of differential equations) that describes the behaviour of 
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the system and generates predictions of the system's 

future behaviour. 

 This article considers the heating system of an old 

Danish school building. The building has been 

“digitalised” with the use of smart thermostats and IoT 

sensing devices [6], to enable smart control of its heating 

system using MPC. For this building, a non-linear grey-

box model, hence a model based on physics and 

monitoring data, is formulated, with the purpose to 

describe the behaviour of the building's heat dynamics. 

Grey-box modelling is a well-known procedure used for 

system identification and modelling dynamics of 

buildings [7] [8]. The parameters of the building model 

are estimated using the CTSM-R software [9]. The non-

linear MPC (NMPC) uses the grey-box model to control 

the heating system according to some thermal comfort 

constraints. The MPC utilises weather predictions of the 

solar irradiance and outdoor temperature to compute the 

optimal radiator set-points, needed to obtain the desired 

indoor air temperature. The objective of the controller 

presented in this work is to lower the heating cost of the 

building. In order to demonstrate the flexibility potential 

of the model, we generated a fictive price signal for the 

energy delivered by the district heating (DH) network. 

The model developed here is able to use such a variable 

price signal and consequently minimise the heating 

costs (by heating when the energy price from the DH 

network is lower). 

 The methodology adopted in this work has already 

shown to be fruitful for lowering the electricity 

consumption of a smart solar tank for storing heat during 

sunny periods. The tank was modelled as a grey-box 
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model, and the MPC takes advantage of future 

disturbances (solar radiation and outdoor temperature) 

and its flexibility [10]. The methodology was also 

successfully adopted in controlling the heat pump of a 

residential house, by lower the electricity expenses with  

varying electricity prices [11]. 

 The main contribution of this work is to 

demonstrate how to use a non-linear grey box model for 

MPC. We present a multiple shooting method to solve 

the optimal control problem related to the MPC [12] and 

incorporate numerical weather forecasts as future 

inputs. The second contribution of this work is to 

illustrate the effects of using the MPC through two 

different simulation studies. The first study shows how 

to make the building flexible by utilising the right price 

signal. The second study shows the potential for 

optimising the operations of the building in order to 

minimise the economic costs associated with heating a 

Danish building in a district heating network. The result 

of the MPC is compared to a simple fixed-schedule 

control strategy which is among the current standards in 

buildings. 

1.1 Structure and outline of the paper 

 The article is organized as follows. Section 2 

presents the building and the modelling scheme along 

with the parameter estimation method and its results 

from the estimation. Section 3 introduces the NMPC 

method that is used to control the building. The 

simulation results are presented and discussed in Section 

4. The article is concluded in Section 5. 

2 The building and the non-linear 
thermal model 

 This section introduces the building and the non-

linear building model used in the present work. The 

model is thoroughly introduced and discussed in [13], 

where also further details on the building and the model 

can be found.  

2.1 Building description and set-up 

 The building with an area of 1576 m2 acts as a 

school and has 12 classrooms, 3 meeting/office rooms, 

and 7 corridors/stairs/open spaces distributed over three 

floors. Fig. 1 shows a picture and a detailed, digital 

simulation model of the building. The building was built 

in 1929 and is not insulated- to meet today's standards. 

The building is equipped with a hydronic heating system 

and is connected to the local district heating network. To 

deliver heat to the rooms, radiators are used; the 

radiators are connected through a two-pipe system to the 

building heat exchanger It should be noticed that steady-

state analyses related to the heat load of the building 

indicated that the heating power of the radiators are 

under-sized in some rooms. As a result, in such rooms a 

comfortable temperature cannot always be maintained 

[14]. 

To make the building smart and enable real-time 

control, sensors and actuators were installed. 

Accordingly, temperature sensors have been installed in 

each room (the sensors are also able to measure CO2-

levels and humidity), and each radiator was equipped 

with a smart thermostat. Moreover, heat-meters have 

been installed to monitor the energy use of the building. 

Furthermore, the temperature of the supply- and return 

water to the heat exchanger connected to the district 

heating is measured (on the building side) by sensors on 

both sides of the heat exchanger. All sensor data are 

collected through servers installed at DTU and the data 

readings are executed every 15 minutes. 

2.2 Building model 

We consider a non-linear model on the form of Eq. (1a) 

and (1b) 

 

𝑑𝒙(𝑡) = 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))𝑑𝑡                          

              +𝑔(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))𝑑𝝎(𝑡) (1𝑎) 

𝐲k = ℎ(𝒙(𝑡𝑘)) + 𝒘𝑘 ,        𝒘𝑘~𝑁(0, 𝑹) (1𝑏) 

 

where 𝒙(𝑡) is the state vector, 𝑢(𝑡) is the control input, 

𝒅(𝑡) is the disturbances, and 𝑹 is the observation error 

covariance. 𝝎(𝑡) is Brownian motion and reflects the 

uncertainty of the model. Eq. (1a) is structurally similar 

to ordinary differential equations except for the 

diffusion term. The use of the diffusion term has the 

advantages that it describes effects that are too complex 

and (nearly) impossible to model deterministically, and 

it predicts uncertainty as well, e.g. the variance of the 

estimates [15]. 

Figure 1. The building picture (top) and a screenshot of 

the digital model of the building (bottom) used as demo-

case in this work. 



 In order to simplify the control of the building, in 

this work we consider and model the building as a 

unique big room with uniform temperature, represented  

by the average of the measured temperature in all closed 

rooms (classrooms and meeting rooms) 

 

𝑇𝑖 =
1

𝑛
∑ 𝑇𝑘

𝑛

𝑘=1

. (2) 

 

Since the heating system is not correctly balanced, and 

some of the rooms have under-dimensioned radiators, 

this modelling and control approach consequently 

implies that some rooms are going to be warmer or 

colder; however, this simplification is needed at this first 

stage, since the problem is simplified significantly in 

terms of dimensionality. It is important for real-time 

MPC that the model is small enough to compute the 

control input without too much delay. In the following, 

we consider a system with the states  

 
𝒙(𝑡) = [𝑇𝑖(𝑡), 𝑇𝑤(𝑡), 𝛷(𝑡), 𝑇ℎ(𝑡), 𝑇ret(𝑡)], (3) 

 

where 𝑇𝑖  is the average indoor air temperature, 𝑇𝑤 is the 

temperature of the building wall, Φ is the flow of the 

water in the radiator circuit, 𝑇ℎ is the temperature of the 

radiators, and 𝑇ret is the temperature of the returning 

water (going to the heat exchanger of the building). The 

control input to the model, 𝑢(𝑡), is the set-points of the 

radiator thermostats. To estimate the valve-opening 

state of the thermostats, the following sigmoid function 

is used: 

𝑓valve(𝑡) =
1

1 + 𝑒−α(𝑢(𝑡)−𝑇𝑖(𝑡)+𝑇offset(𝑡))
, (4) 

 

where u is the thermostat set-point, α determines the 

slope of the sigmoid function, and 𝑇offset(𝑡) is an offset 

that models the physical distance between the 

temperature sensors in the room and the thermostats of 

the radiators. Fig. 2 shows the estimated 𝑓valve. The 

sigmoid function is attractive due to its fixed shape that 

fits the behaviour of thermostats and requires only two 

parameters, 𝛼 and 𝑇offset. The term 𝑓valve therefore 

estimates how open the radiator valves are (1 being fully 

open and 0 being fully closed), i.e. how much water 

flows through the radiators. The disturbances include 

the ambient air temperature and solar irradiance 𝒅(𝑡) =
[𝑇𝑎(𝑡), 𝜙𝑠(𝑡)]

T. 

 The building dynamics model are the following [1]: 

 

𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) = 

[
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐶𝑖
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1
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1
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1

𝐶ℎ
(

1

𝑅𝑓𝑟
(𝑇𝑡

ℎ − 𝑇𝑡
ret))

]
 
 
 
 
 
 
 
 
 
 
 
 

. (5) 

 

In Eq (5), to save space, we write time dependence 

as subscript, e.g. 𝑇𝑎(𝑡) = 𝑇𝑡
𝑎. 𝐴𝑤 is the effective area of  

the solar radiation gain, 𝑐𝑝,𝑤 is the specific heat capacity 

of water, and Φmax is the maximum water flow in the 

radiator circuit. 𝑇for is the supply temperature of the 

water on the building side of the heat exchanger and is 

Parameter Estimate Unit 

𝑇offset -0.101 [°C] 

𝐶ℎ 0.134 [kJ/°C] 

𝐶𝑓 0.198  

𝑅𝑟𝑓 2.030 [°C h/kJ] 

𝐶𝑖 9.57 [kJ/°C] 

𝐶𝑤 45.36 [kJ/°C] 

𝑅𝑖ℎ 2.151 [°C h/kJ] 

𝑅𝑖𝑤 0.199 [°C h/kJ] 

𝑅𝑤𝑎 2.251 [°C h/kJ] 

𝐴𝑠 7.600 [m2] 

𝜎1 8.6e-4 [°C] 

𝜎2 0.429 [°C] 

𝜎3 111.6 [kg/h] 

𝜎4 1.647 [°C] 

𝜎5 6.469 [°C] 

𝑅1 9.6e-7 [°C] 

𝑅2 2.7e-4 [kW] 

𝑅3 5.4e-3 [°C] 

Φmax 1145.3 [kg/h] 

𝛼 1.592 [°C-1] 

Table 1. The parameter estimates and their physical 

units 

Figure 2. The estimated valve function of the thermostats, 

𝑓valve, as a function of how much the room temperature 

deviates from the set-point. The sigmoid function is 

attractive for this model since it ranges from 0 to 1 and has 

an exponential transition. Also, it relies on only two 

parameters and makes the parameter estimation robust. 



kept constant at 55 °C. The diffusion term in Eq. (1), g, 

has the simple form of Eq. (6): 

 

 

𝑔(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) = diag(σ1, σ2, σ3, σ4, σ5) (6) 

 

Naturally, not all states of the building are observed. 

Instead, we are limited to the information available in 

the non-linear observation equation 

 

𝒚𝑘 = ℎ(𝒙(𝑡𝑘)) = [𝑇𝑖(𝑡𝑘),  ϕℎ(𝑡),  𝑇ret(𝑡𝑘)]T (7) 

 

That is, we observe the average indoor air temperature 

𝑇𝑖(𝑡𝑘), the heat load ϕℎ(𝑡𝑘) = Φ(𝑡𝑘)(𝑇for − 𝑇ret(𝑡𝑘)), 

and the return temperature 𝑇ret(𝑡𝑘). Recall that the 

supply temperature is known and is Tfor =  55 °C. 

2.3 Model parameter estimation 

 We use the software CTSM-R [9] to estimate the 

parameters in the continuous-time stochastic model. The  

parameter estimation is based on the maximum 

likelihood principle [16]. That is, we maximise the 

likelihood function, which is a function of the 

parameters 

 

ℒ(𝛉) = 𝑝(𝒙0)∏𝑝(𝒚𝑘|𝒴𝑘−1; 𝛉)

𝑁

𝑘=1

(8) 

 

Where 𝒴𝑘−1 = {𝑦𝑘−1, 𝑦𝑘−2, ⋯ , 𝑦0} is the information 

up till time 𝑡𝑘−1, p is the probability of observing 𝒚𝑘 

with the model in Eq. (5) and Eq. (6) given the 

parameters θ and the information 𝒴𝑘−1. Given the 

model structure in Eq. (5) and Eq. (6), as well as 

appropriate informative data, any unknown parameters 

can be estimated.  

 Table 1 lists the parameter estimates from the 

estimation procedure. Fig. 3 compares the fit of the 

resulting model to the data and indicates a good match. 

It shall be noted that the return temperature 

measurements are not representative when the heat load 

is zero and the water flow in the building is zero. We 

thus put very low weight on the return temperature 

observations in the estimation procedure in these time 

intervals (indicated by the grey periods in the figure). 

3 Non-linear model predictive control: a 
multiple shooting method 

 This section introduces a direct multiple-shooting 

method for solving the particular NMPC problem. It 

also discusses a method to discretise the optimisation 

problem to make it numerically tractable. The 

optimisation problem lies the basis for computing the 

set-points for the radiators. However, solving the 

optimisation problem requires us to know the entire state 

of the system, 𝒙. For reconstructing the system states 

based on observation, 𝒚, the continuous-discrete 

extended Kalman filter is used [17]. 

 This paper considers an optimal control problem on 

the following form 

 

min
𝑥,𝑢

  φ = ∫ ℓ(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))
𝑡𝑘+𝑇

𝑡𝑘

d𝑡 (9𝑎) 

Figure 3. Experimental data together with the estimated heat load, air temperature, and return water temperature by the model. 

The greyed-out periods in the secondgraph indicates periods where the return temperature is disregarded, because the 

observations do not represent the actual return temperature 



𝑠. 𝑡.       𝒙(𝑡𝑘) = 𝒙(0)                             (9𝑏) 

𝒙̇(𝑡) = 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) (9𝑐) 
𝑢𝑚𝑖𝑛(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢max(𝑡) (9𝑑) 
𝑇min(𝑡) ≤ 𝑇𝑖(𝑡) ≤ 𝑇max(𝑡) (9𝑒) 

 

where T is the prediction and control horizon, ℓ is the 

cost function, and 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) is the model 

equations in Eq. (5). 

3.1 Discrete-time approximation of the optimal 
control problem 

 To make the optimal control problem in Eq. (9) 

numerically tractable, we propose a multiple shooting 

method to discretise the problem. Multiple shooting is a 

simultaneous method in the sense that the state variables 

also are a part of the optimisation problem. 

The problem is discretised in the sense that the 

system consider 𝑥 at discrete time points 𝑡𝑘, 𝑡𝑘+1, …,  

𝑡𝑘+𝑁 starting from the initial time 𝑡𝑘 till 𝑡𝑘 + 𝑇. Now, 

define a function ϕ(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) that computes the 

solution to the following initial value problem 

 

𝒙̇(𝑡) = 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))                    (10𝑎) 
𝒙(𝑡𝑘) = 𝒙𝑘  ,  (initial condition)   (10𝑏) 

 

at time 𝑡𝑘+1. Hence, ϕ(𝒙(𝑡𝑘), 𝑢(𝑡), 𝒅(𝑡)) = 𝒙(𝑡𝑘+1) is 

a function that integrates the system forward to the next 

time instance given the input and disturbances in the 

time interval [𝑡𝑘, 𝑡𝑘+1[. To simplify the optimisation 

problem, we assume that the set-points, 𝑢(𝑡), and the 

disturbances, 𝑑(𝑡), are piece-wise constant in each time 

interval [𝑡𝑘, 𝑡𝑘+1[ 

 

𝑢(𝑡) = 𝑢𝑘 ,  𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1[ (11𝑎) 
𝒅(𝑡) = 𝒅𝑘 ,  𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1[ (11𝑏) 

 

The optimal control problem therefore simplifies to 

min
{𝒙}𝑘=1

𝑁 ,{𝒖}𝑘=0
𝑁−𝟏

  𝜑 = ∑ 𝐿𝑘(𝒙𝑘 , 𝑢𝑘 , 𝒅𝑘)

𝑁−1

𝑘=0

(12𝑎) 

𝑠. 𝑡.        𝒙𝑘 = 𝒙(0)                          (12𝑏) 
𝒙𝑘+𝟏 = 𝜙(𝒙𝑘 , 𝑢𝑘 , 𝒅𝑘) (12𝑐) 

𝑢𝑚𝑖𝑛,𝑘 ≤ 𝑢𝑘 ≤ 𝑢max,𝑘               (12𝑑) 
𝑇min,k ≤ 𝑇𝑖,𝑘 ≤ 𝑇max,k            (12𝑒) 

 

In the above, 

𝐿𝑘 = ∫ ℓ(𝒙(𝑡), 𝑢𝑘 , 𝒅𝑘)d𝑡
𝑡𝑘+1

𝑡𝑘

  (13) 

 

is the quadrature of 𝑥(𝑡) w.r.t ℓ in the time interval 

[𝑡𝑘, 𝑡𝑘+1]. 
 For numerical computation of the minimisation 

problem in Eq. (12), we use CasADi [18], which offers 

easy numerical implementation and automatic 

differentiation for optimal control problems. 

4 Simulation results 

 This section presents the results of two simulation 

studies. The first simulation investigates the flexibility 

of the building. The second simulation investigates the 

ability of the NMPC to minimise the economic 

operational costs of heating the building (here, the 

objective is related to the minimisation of return 

temperature to the district heating, hence to the 

minimisation of penalty fees due to high return 

temperature to the grid). We use the Euler-Maruyama 

simulation scheme to simulate from the SDE-model and 

Figure 4. A small simulation of thermostatic set-point control of the building using a price signal that reflects peak hours and 

displays flexibility. The controller keeps the heat usage to a minimum during peak hours when the heat is expensive. 



the continuous-discrete extended Kalman filter to 

reconstruct the system state. 

4.1 Simulation: Flexibility of the building 

 To investigate the flexibility of the building in a 

smart energy system, we use a cost function in the MPC 

that takes a price signal. In a flexibility setting, the price 

signal reflects how ''expensive'' it is to heat the building 

at any given time. We define the cost function as 

 

ℓ1(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡), 𝑠(𝑡))                                     

= 𝑐(𝑡)Φ(𝑡)(𝑇for − 𝑇ret(𝑡)) + 𝜌𝑠(𝑡) (14) 

 

where c is the price signal, s is a slack variable to 

soften the indoor air temperature constraints (to make 

the optimisation problem feasible outside of the 

constraints), and ρ is the slack penalty. Fig. 4 presents a 

simulation of the building model in Eq. (5) using the 

optimal control problem introduced in Section 3 with the 

cost function in Eq.(14). The control runs in a closed-

loop setting with the time between control inputs and the 

prediction horizon equal to one hour and 24 hours, 

respectively. Furthermore, the controller has access to 

the future weather disturbances. In the simulation, the 

heating price is simply designed in order to see the effect 

of the MPC. It is expensive at 100 DKK per kWh during 

peak hours in the mornings and evenings. The heat price 

is otherwise low at 10 DKK per kWh. As a result, the 

controller mainly heats outside peak hours and only does 

so if the indoor temperature gets too low. Due to the 

under-dimensioned heating system and the building's 

poor insulation level, the controller still needs to supply 

some heat during the peak hours to maintain the desired 

temperature. The results suggest that the building can 

supply some flexibility under these circumstances. 

However, considering that the outdoor temperature in 

Denmark can become even lower than in the present 

simulation, the building will have less flexibility in such 

situations. 

4.2 Simulation: Minimisation of operational 
costs by lowering return temperature 

 As a building owner in the Danish district heating, 

one pays an additional fee if the return temperature is 

high for two reasons. First, if the temperature difference 

is small, the mass flow rate needs to be higher. Second, 

high return temperature to the district heating sources 

decreases the production efficiency. The pricing scheme 

is very different between district heating areas. This 

holds for both the price of heat and the penalty for not 

cooling the return adequately. In the present analysis, we 

set it quite progressively, namely as follows: if the return 

temperature is above 40 °C, the heat price increases 2% 

per extra degree Kelvin of the return temperature. The 

cost-function where this is accounted for is 

 

ℓ2(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡), 𝑠(𝑡), 𝑣(𝑡)) = 

𝑐(𝑡)𝛷(𝑡)(𝑇for − 𝑇ret(𝑡))(1 + 0.02𝑣(𝑡)) + 𝜌𝑠(𝑡) (15) 

 

where v is a slack variable that softens the upper 

constraint at 40 °C on the return temperature and the 

scalar 0.02 is the percent-wise increase in heat cost. 

Fig. 5 displays a simulation study of the building 

model in Eq. (5) using the cost function in Eq. (14). The 

figure also depicts a baseline, which uses a simple set-

point control that turns down the temperature during the 

Figure 5. A simulation study that compares a current standard set-point control in today’s buildings (Baseline) and the NMPC 

presented in this paper. The heat costs are constant at 0.71 DKK/kWh plus a penalty of 2% for each °C the return temperature is 

above 40 °C. Results suggest an economic reduction by around 10%. 



night and back on during the day. The baseline 

represents the current practice in most buildings using 

rule-based control: a fixed set-point pattern used every 

day. This experiment reflects the actual economic costs 

of operating the building together with the extra fee 

when the return temperature is too high. The results 

demonstrate the emphasis the controller puts on keeping 

the return temperature below 40 °C while supplying 

enough heat to comply with the constraints. The actual 

economic costs associated with each control strategy 

during the one simulated month are 4522.9 DKK and 

4066.6 DKK for the baseline and MPC, respectively. 

This points toward economic savings of around 10% by 

using the proposed control strategy. Much of this 

reduction is explained by the ability of the controller to 

lower the return temperature and avoid extra penalties, 

which account for 382.2 DKK and 89.5 DKK, 

respectively for the two strategies. Especially during the 

cold periods, where extra heat is needed, the economic 

savings are high. The total energy use is reduced from 

5891.4 kWh to 5742.5 kWh (around 2.5%) by the MPC, 

which comes from the ability of the MPC to lower the 

temperature closer to the constraints. This optimisation 

and the lower return temperature not only benefit the 

building operators, but also benefits the district heating 

operators by significantly decreasing the amount of heat 

loss in the district heating system. 

It should be stressed that these results apply only to 

the current settings and may vary according to different 

district heating areas and pricing schemes. Also, in a 

realistic setup with meteorological weather forecasts, 

building occupants, etc., the control performance may 

be affected. 

5 Conclusion 

 This article introduced a non-linear grey-box model 

describing the heat dynamics of an old school building. 

This model enabled us to predict and control the future 

evolution of temperatures and heating in the building. 

We presented a NMPC method and used it in a 

simulation study to cast light on the benefits. The results 

suggest that smart control of the heat supply unlocks the 

building's flexibility and supplies economic savings of 

up to 10% under a particular, but realistic, pricing 

scheme. The specific savings may vary depending on 

the district heating area since pricing schemes vary. 

Also, the controller had access to the actual future 

weather disturbances, which in a realistic setting must 

be replaced with weather forecasts potentially 

decreasing the savings. Future work involves 

implementation of the NMPC in the building and 

investigation of how well individual rooms behave 

under the simplified model [19]. 
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