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Non-linear Model Predictive Control for Smart Heating of

Buildings

Christian Ankerstjerne Thilker'", Hjorleifur G. Bergsteinsson, Peder Bacher?, Henrik Madsen?, Davide Cali!, and Rune

G. Junker

1Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract. Smart and flexible operation of components in district heating systems can play a crucial role in
integrating larger shares of renewable energy sources in energy systems. Buildings are one of the crucial
components that will enable flexibility in the district heating by using intelligent operation. Recent work
suggests that such improved operation at the same time can increase thermal comfort and lower economic
costs. We have digitalised the heating system in a Danish school by adding 10T devices, such as smart
thermostats and temperature sensors to demonstrate the possibilities of making buildings smart. Based on
experimental data, this paper introduces a non-linear grey-box model of the thermal dynamics of the
building. A non-linear model predictive control method is presented for the thermostatic set-point control
of the building's radiators. Based on the building model and the control algorithm, simulation studies are
carried out to show the flexibility potential of the building. When used for lowering the return temperature
the results suggest that operational costs can be lowered by around 10% using predictive control.

1 Introduction

Digitalisation of heating systems, i.e., through smart
thermostats and indoor climate sensors, creates the
possibility of making buildings smart by having data of
the building heat dynamic. This, however, does not
alone make the building (or the heating system) smart as
it does not yet use the data to make the system efficient
or flexible. Without smartness, the system is just data-
rich. The system becomes smart when it uses the data to
e.g. lower some cost functions, that could be to lower
the heating costs without violating thermal comfort or
reduce heat consumption during peak hours (known as
peak shaving). The data can be used to formulate models
that describe the dynamics of the building climate. Such
models enable the system to become smart using e.g.
Model Predictive Control (MPC) [1]. MPC is a control
method that minimises some predefined cost function
while satisfying a set of constraints. MPC has become
very popular for the heating, ventilation, and air-
conditioning sector in the past years as it makes the
system smart by making it efficient and/or flexible [2]
[3] [4]. The advantage of the MPC over other control
methods is its ability to predict the future behaviour of
the system. Thereby, the MPC can take weather
predictions and future activities into account when
optimising the manipulated variables (e.g., desire
temperature in a room) of the system [5]. MPC setups
usually run in a closed-loop where the controller gets
feedback on how the system reacted to the latest input
or disturbance. The MPC is based on a model (e.g. a set
of differential equations) that describes the behaviour of
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the system and generates predictions of the system's
future behaviour.

This article considers the heating system of an old
Danish school building. The building has been
“digitalised” with the use of smart thermostats and IoT
sensing devices [6], to enable smart control of its heating
system using MPC. For this building, a non-linear grey-
box model, hence a model based on physics and
monitoring data, is formulated, with the purpose to
describe the behaviour of the building's heat dynamics.
Grey-box modelling is a well-known procedure used for
system identification and modelling dynamics of
buildings [7] [8]. The parameters of the building model
are estimated using the CTSM-R software [9]. The non-
linear MPC (NMPC) uses the grey-box model to control
the heating system according to some thermal comfort
constraints. The MPC utilises weather predictions of the
solar irradiance and outdoor temperature to compute the
optimal radiator set-points, needed to obtain the desired
indoor air temperature. The objective of the controller
presented in this work is to lower the heating cost of the
building. In order to demonstrate the flexibility potential
of the model, we generated a fictive price signal for the
energy delivered by the district heating (DH) network.
The model developed here is able to use such a variable
price signal and consequently minimise the heating
costs (by heating when the energy price from the DH
network is lower).

The methodology adopted in this work has already
shown to be fruitful for lowering the electricity
consumption of a smart solar tank for storing heat during
sunny periods. The tank was modelled as a grey-box
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model, and the MPC takes advantage of future
disturbances (solar radiation and outdoor temperature)
and its flexibility [10]. The methodology was also
successfully adopted in controlling the heat pump of a
residential house, by lower the electricity expenses with
varying electricity prices [11].

The main contribution of this work is to
demonstrate how to use a non-linear grey box model for
MPC. We present a multiple shooting method to solve
the optimal control problem related to the MPC [12] and
incorporate numerical weather forecasts as future
inputs. The second contribution of this work is to
illustrate the effects of using the MPC through two
different simulation studies. The first study shows how
to make the building flexible by utilising the right price
signal. The second study shows the potential for
optimising the operations of the building in order to
minimise the economic costs associated with heating a
Danish building in a district heating network. The result
of the MPC is compared to a simple fixed-schedule
control strategy which is among the current standards in
buildings.

1.1 Structure and outline of the paper

The article is organized as follows. Section 2
presents the building and the modelling scheme along
with the parameter estimation method and its results
from the estimation. Section 3 introduces the NMPC
method that is used to control the building. The
simulation results are presented and discussed in Section
4. The article is concluded in Section 5.

2 The building and the non-linear
thermal model

This section introduces the building and the non-
linear building model used in the present work. The
model is thoroughly introduced and discussed in [13],
where also further details on the building and the model
can be found.

2.1 Building description and set-up

The building with an area of 1576 m? acts as a
school and has 12 classrooms, 3 meeting/office rooms,
and 7 corridors/stairs/open spaces distributed over three
floors. Fig. 1 shows a picture and a detailed, digital
simulation model of the building. The building was built
in 1929 and is not insulated- to meet today's standards.
The building is equipped with a hydronic heating system
and is connected to the local district heating network. To
deliver heat to the rooms, radiators are used; the
radiators are connected through a two-pipe system to the
building heat exchanger It should be noticed that steady-
state analyses related to the heat load of the building
indicated that the heating power of the radiators are
under-sized in some rooms. As a result, in such rooms a
comfortable temperature cannot always be maintained
[14].

Figure 1. The building picture (top) and a screenshot of
the digital model of the building (bottom) used as demo-
case in this work.

To make the building smart and enable real-time
control, sensors and actuators were installed.
Accordingly, temperature sensors have been installed in
each room (the sensors are also able to measure CO»-
levels and humidity), and each radiator was equipped
with a smart thermostat. Moreover, heat-meters have
been installed to monitor the energy use of the building.
Furthermore, the temperature of the supply- and return
water to the heat exchanger connected to the district
heating is measured (on the building side) by sensors on
both sides of the heat exchanger. All sensor data are
collected through servers installed at DTU and the data
readings are executed every 15 minutes.

2.2 Building model

We consider a non-linear model on the form of Eq. (1a)
and (1b)

dx(t) = f(x(©), u(®), d(t))de
+g(x(6), u(®), d(t))dw(t) (1a)
Vi = h(x(t)) +wy,  wi~N(O,R) (1b)

where x(t) is the state vector, u(t) is the control input,
d(t) is the disturbances, and R is the observation error
covariance. w(t) is Brownian motion and reflects the
uncertainty of the model. Eq. (1a) is structurally similar
to ordinary differential equations except for the
diffusion term. The use of the diffusion term has the
advantages that it describes effects that are too complex
and (nearly) impossible to model deterministically, and
it predicts uncertainty as well, e.g. the variance of the
estimates [15].



Table 1. The parameter estimates and their physical
units

Parameter Estimate Unit
Totfset -0.101 [°C]
Cn 0.134 [kJ/°C]
Cr 0.198
Ry¢ 2.030 [°C h/kJ]
C; 9.57 [kJ/°C]
Cyw 45.36 [kJ/°C]
Rin 2.151 [°C h/kJ]
Riw 0.199 [°C h/kJ]
Rya 2.251 [°C h/kJ]
Ag 7.600 [m?]
o1 8.6e-4 [°C]
05 0.429 [°C]
03 111.6 [kg/h]
Oy 1.647 [°C]
05 6.469 [°C]
Ry 9.6e-7 [°C]
R, 2.7e-4 [kW]
R3 5.4e-3 [°C]
D hax 1145.3 [kg/h]
a 1.592 [°C
1.01
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Figure 2. The estimated valve function of the thermostats,
Ffoawve, as a function of how much the room temperature
deviates from the set-point. The sigmoid function is
attractive for this model since it ranges from 0 to 1 and has
an exponential transition. Also, it relies on only two
parameters and makes the parameter estimation robust.

In order to simplify the control of the building, in
this work we consider and model the building as a
unique big room with uniform temperature, represented
by the average of the measured temperature in all closed
rooms (classrooms and meeting rooms)

1 n
Ty== Ty @
k=1

Since the heating system is not correctly balanced, and
some of the rooms have under-dimensioned radiators,
this modelling and control approach consequently
implies that some rooms are going to be warmer or
colder; however, this simplification is needed at this first
stage, since the problem is simplified significantly in
terms of dimensionality. It is important for real-time
MPC that the model is small enough to compute the
control input without too much delay. In the following,
we consider a system with the states

x(0) = [Ti(0), Ty (8), P(0), Ty (0), Tree (D], 3

where T; is the average indoor air temperature, T,, is the
temperature of the building wall, ® is the flow of the
water in the radiator circuit, T}, is the temperature of the
radiators, and T, is the temperature of the returning
water (going to the heat exchanger of the building). The
control input to the model, u(t), is the set-points of the
radiator thermostats. To estimate the valve-opening
state of the thermostats, the following sigmoid function

is used:
1

+ e~ 0(UO-TiO+Toreec ()

fvalve @) = 1 (4)

where u is the thermostat set-point, a determines the
slope of the sigmoid function, and Ty (t) is an offset
that models the physical distance between the
temperature sensors in the room and the thermostats of
the radiators. Fig. 2 shows the estimated f,,.. The
sigmoid function is attractive due to its fixed shape that
fits the behaviour of thermostats and requires only two
parameters, @ and T,geer. The term fiae therefore
estimates how open the radiator valves are (1 being fully
open and 0 being fully closed), i.e. how much water
flows through the radiators. The disturbances include
the ambient air temperature and solar irradiance d(t) =
[Ta (), $s(O]™.

The building dynamics model are the following [1]:
f(x(®), u(®), d(®)) =

rl1/1 . 1 . ]
—(—(TF =T +—(T¥ - T}) + Aw b
& (o (8 =) o (1 = 1) + At
i L(Ti _ TW) +L(Ta —T»)
Cw Riw ‘ ‘ Rwa ¢ ¢

1 valve

C_f (cbmax t - CDL‘) . (5)

1 1 .
C_ (‘btcp,w(Tfor - Tth) + R. (Ttl - Tth)>
h ih

1(1
h _ 7ret
Cp (Rfr (Tt Tt ))

In Eq (5), to save space, we write time dependence
as subscript, e.g. T, (t) = T£. A,, is the effective area of
the solar radiation gain, ¢, ,, is the specific heat capacity
of water, and ®,,,, is the maximum water flow in the
radiator circuit. Ty, is the supply temperature of the
water on the building side of the heat exchanger and is




—— Delivered heat t]J;

—h
— =Simulated delivered heat ¢,

=5
= =
=
S T —T — T
Dec-21 Dec-23 Dec-25 Dec-27
- ~iet
—— Forward temperature 77" — —Return temperature 7' Simulated return temperature T,
% -
?‘ = l‘\“ l"\ «,l..» T r‘!\\ o "-H‘ :ﬂ\. ;»,T’-'-"‘I_{Ni\ wf J‘I"V'\lr f‘-"’ﬂ:; N -‘ip f_-».JJ\ m},}"fl’ W
£ R 1 1 ] 3 ¥
_ _— s | o 1 .} (P 1
= “rjf,i :_- _{ \\ ..:-::_—J %-! ‘I\ \ \,. ) \ \ \ \‘[ ! |\ \ ‘\\_{"’
) T T T
Dee-21 Dec-23 Dec-25 Dec-27
. i ralv
—— Indoor temperature 7'/ — =Simulated indoor temperature T, Radiator valve states j‘id ‘
‘;\Iﬁ -
. _ —
o A
=

T T
Dec-21 Dec-23

T T
Dec-25 Dec-27

Figure 3. Experimental data together with the estimated heat load, air temperature, and return water temperature by the model.
The greyed-out periods in the secondgraph indicates periods where the return temperature is disregarded, because the

observations do not represent the actual return temperature

kept constant at 55 °C. The diffusion term in Eq. (1), g,
has the simple form of Eq. (6):

g(x(t),u(t),d(t)) = diag(oy, 0,03, 04,05) (6)

Naturally, not all states of the building are observed.
Instead, we are limited to the information available in
the non-linear observation equation

Vi = h(x(ty)) = [Ti(tx), dr (), Tree(ti)]” @)

That is, we observe the average indoor air temperature
T;(ti), the heat load ¢y (i) = @ (i) (Tror — Trec(ti)),
and the return temperature T,..(t;). Recall that the
supply temperature is known and is Ty, = 55 °C.

2.3 Model parameter estimation

We use the software CTSM-R [9] to estimate the
parameters in the continuous-time stochastic model. The
parameter estimation is based on the maximum
likelihood principle [16]. That is, we maximise the
likelihood function, which is a function of the
parameters

£(8) = p(xo) | [p0ulYiri®) ®

k=1

Where Y1 = {Vi—1,Yk—2 """, Yo} is the information
up till time t,_4, p is the probability of observing y,
with the model in Eq. (5) and Eq. (6) given the

parameters 0 and the information Y,_,. Given the
model structure in Eq. (5) and Eq. (6), as well as
appropriate informative data, any unknown parameters
can be estimated.

Table 1 lists the parameter estimates from the
estimation procedure. Fig. 3 compares the fit of the
resulting model to the data and indicates a good match.
It shall be noted that the return temperature
measurements are not representative when the heat load
is zero and the water flow in the building is zero. We
thus put very low weight on the return temperature
observations in the estimation procedure in these time
intervals (indicated by the grey periods in the figure).

3 Non-linear model predictive control: a
multiple shooting method

This section introduces a direct multiple-shooting
method for solving the particular NMPC problem. It
also discusses a method to discretise the optimisation
problem to make it numerically tractable. The
optimisation problem lies the basis for computing the
set-points for the radiators. However, solving the
optimisation problem requires us to know the entire state
of the system, x. For reconstructing the system states
based on observation, y, the continuous-discrete
extended Kalman filter is used [17].

This paper considers an optimal control problem on
the following form

ty+T

rgcliun @ = f {’(x(t),u(t), d(t)) dt 9a)

7%
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Figure 4. A small simulation of thermostatic set-point control of the building using a price signal that reflects peak hours and
displays flexibility. The controller keeps the heat usage to a minimum during peak hours when the heat is expensive.

s.t.  x(t;) = x(0) (9b)
x(t) = f(x(©), u(®), d(t)) (9¢)
Ui () < u(t) < Umax(t) (9d)
Tmin(t) < Ti(t) < Tmax(t) (93)

where T is the prediction and control horizon, ¢ is the
cost function, and f (x(t),u(t), d(t)) is the model
equations in Eq. (5).

3.1 Discrete-time approximation of the optimal
control problem

To make the optimal control problem in Eq. (9)
numerically tractable, we propose a multiple shooting
method to discretise the problem. Multiple shooting is a
simultaneous method in the sense that the state variables
also are a part of the optimisation problem.

The problem is discretised in the sense that the
system consider x at discrete time points &y, tri1, -
tr4n starting from the initial time ¢, till t;, + T. Now,
define a function cl)(x(t), u(t), d(t)) that computes the
solution to the following initial value problem

x(t) = f(x(), u(®), d(t)) (10a)

x(ty) = x., (initial condition) (10b)

at time t;,. Hence, q)(x(tk),u(t), d(t)) = X(ty4q1) is
a function that integrates the system forward to the next
time instance given the input and disturbances in the
time interval [tg,ti+q[. To simplify the optimisation
problem, we assume that the set-points, u(t), and the
disturbances, d(t), are piece-wise constant in each time
interval [ty, ty 1]

u(t) = ug, tE€ [ty trsrl (11a)
dt) =dy, tE [ty trl (11b)

The optimal control problem therefore simplifies to
N-1

min = ZL (xg, g, di) (12a)
Pt @ 4 kX, Uk, Qe
s.t.  x;=x(0) (12b)
Xr1 = P(xy, Uy, dy) (12¢)
Umin,k < Uk < Umax,k (12d)
Tmin,k < Ti,k < Tmax,k (129)
In the above,

Tht1

L= [ eaOwoa0a (13)
ty

is the quadrature of x(t) w.r.t € in the time interval
[t tiesal-

For numerical computation of the minimisation
problem in Eq. (12), we use CasADi [18], which offers
easy numerical implementation and automatic
differentiation for optimal control problems.

4 Simulation results

This section presents the results of two simulation
studies. The first simulation investigates the flexibility
of the building. The second simulation investigates the
ability of the NMPC to minimise the economic
operational costs of heating the building (here, the
objective is related to the minimisation of return
temperature to the district heating, hence to the
minimisation of penalty fees due to high return
temperature to the grid). We use the Euler-Maruyama
simulation scheme to simulate from the SDE-model and
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Figure 5. A simulation study that compares a current standard set-point control in today’s buildings (Baseline) and the NMPC
presented in this paper. The heat costs are constant at 0.71 DKK/kWh plus a penalty of 2% for each °C the return temperature is
above 40 °C. Results suggest an economic reduction by around 10%.

the continuous-discrete extended Kalman filter to
reconstruct the system state.

4.1 Simulation: Flexibility of the building

To investigate the flexibility of the building in a
smart energy system, we use a cost function in the MPC
that takes a price signal. In a flexibility setting, the price
signal reflects how "expensive" it is to heat the building
at any given time. We define the cost function as

£ (x(®), u(®),d(®),5())

= c(P()(Tror — Tree (1)) + ps () (14)

where c¢ is the price signal, s is a slack variable to
soften the indoor air temperature constraints (to make
the optimisation problem feasible outside of the
constraints), and p is the slack penalty. Fig. 4 presents a
simulation of the building model in Eq. (5) using the
optimal control problem introduced in Section 3 with the
cost function in Eq.(14). The control runs in a closed-
loop setting with the time between control inputs and the
prediction horizon equal to one hour and 24 hours,
respectively. Furthermore, the controller has access to
the future weather disturbances. In the simulation, the
heating price is simply designed in order to see the effect
of the MPC. It is expensive at 100 DKK per kWh during
peak hours in the mornings and evenings. The heat price
is otherwise low at 10 DKK per kWh. As a result, the
controller mainly heats outside peak hours and only does
so if the indoor temperature gets too low. Due to the
under-dimensioned heating system and the building's
poor insulation level, the controller still needs to supply
some heat during the peak hours to maintain the desired

temperature. The results suggest that the building can
supply some flexibility under these circumstances.
However, considering that the outdoor temperature in
Denmark can become even lower than in the present
simulation, the building will have less flexibility in such
situations.

4.2 Simulation: Minimisation of operational
costs by lowering return temperature

As a building owner in the Danish district heating,
one pays an additional fee if the return temperature is
high for two reasons. First, if the temperature difference
is small, the mass flow rate needs to be higher. Second,
high return temperature to the district heating sources
decreases the production efficiency. The pricing scheme
is very different between district heating areas. This
holds for both the price of heat and the penalty for not
cooling the return adequately. In the present analysis, we
set it quite progressively, namely as follows: if the return
temperature is above 40 °C, the heat price increases 2%
per extra degree Kelvin of the return temperature. The
cost-function where this is accounted for is

£,(x(®),u(®), d(t),s(t), v(1)) =
c®)P)(Tror — Tree ) (1 + 0.02v(8)) + ps(t)  (15)
where v is a slack variable that softens the upper
constraint at 40 °C on the return temperature and the

scalar 0.02 is the percent-wise increase in heat cost.
Fig. 5 displays a simulation study of the building
model in Eq. (5) using the cost function in Eq. (14). The
figure also depicts a baseline, which uses a simple set-
point control that turns down the temperature during the



night and back on during the day. The baseline
represents the current practice in most buildings using
rule-based control: a fixed set-point pattern used every
day. This experiment reflects the actual economic costs
of operating the building together with the extra fee
when the return temperature is too high. The results
demonstrate the emphasis the controller puts on keeping
the return temperature below 40 °C while supplying
enough heat to comply with the constraints. The actual
economic costs associated with each control strategy
during the one simulated month are 4522.9 DKK and
4066.6 DKK for the baseline and MPC, respectively.
This points toward economic savings of around 10% by
using the proposed control strategy. Much of this
reduction is explained by the ability of the controller to
lower the return temperature and avoid extra penalties,
which account for 382.2 DKK and 89.5 DKK,
respectively for the two strategies. Especially during the
cold periods, where extra heat is needed, the economic
savings are high. The total energy use is reduced from
5891.4 kWh to 5742.5 kWh (around 2.5%) by the MPC,
which comes from the ability of the MPC to lower the
temperature closer to the constraints. This optimisation
and the lower return temperature not only benefit the
building operators, but also benefits the district heating
operators by significantly decreasing the amount of heat
loss in the district heating system.

It should be stressed that these results apply only to
the current settings and may vary according to different
district heating areas and pricing schemes. Also, in a
realistic setup with meteorological weather forecasts,
building occupants, etc., the control performance may
be affected.

5 Conclusion

This article introduced a non-linear grey-box model
describing the heat dynamics of an old school building.
This model enabled us to predict and control the future
evolution of temperatures and heating in the building.
We presented a NMPC method and used it in a
simulation study to cast light on the benefits. The results
suggest that smart control of the heat supply unlocks the
building's flexibility and supplies economic savings of
up to 10% under a particular, but realistic, pricing
scheme. The specific savings may vary depending on
the district heating area since pricing schemes vary.
Also, the controller had access to the actual future
weather disturbances, which in a realistic setting must
be replaced with weather forecasts potentially
decreasing the savings. Future work involves
implementation of the NMPC in the building and
investigation of how well individual rooms behave
under the simplified model [19].
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