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a b s t r a c t

To reach the carbon emission reduction targets set by the European Union, the building sector has
embraced multiple strategies such as building retrofit, demand side management, model predictive con-
trol and building load forecasting. All of which require knowledge of the building dynamics in order to
effectively perform. However, the scaling-up of building modelling approaches is still, as of today, a
recurrent challenge in the field. The heterogeneous building stock makes it tedious to tailor interpretable
approaches in a scalable way. This work puts forward an automated and scalable method for stochastic
model identification of building heat dynamics, implemented on a set of 247 Dutch residential buildings.
From established models and selection approach, automation extensions were proposed along with a
novel residual auto-correlation indicator, i.e., normalized Cumulated Periodogram Boundary Excess
Sum (nCPBES), to classify obtained model fits. Out of the available building stock, 93 building heat
dynamics models were identified as good fits, 95 were classified as close and 59 were designed as poor.
The identified model parameters were leveraged to estimate thermal characteristics of the buildings to
support building energy benchmarking, in particular, building envelope insulation performance. To
encourage the dissimination of the work and assure reproducibility, the entire code base can be found
on Github along with an example data set of 3 anonymized buildings. The presented method takes an
important step towards the automation of building modeling approaches in the sector. It allows the
development of applications at large-scale, enhancing building performance benchmarks, boosting
city-scale building stock scenario modeling and assisting end-use load identifications as well as building
energy flexibility potential estimation.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In a context of global carbon emission reduction, the building
sector has embraced data as the new fuel to harvest, at scale, the
power of building performance modeling, granting valuable
insights into the dynamics driving the energy demand of buildings.
Indeed, while holding a share of up to 39% of global emissions in
2018 [1], the building sector has investigated multiple strategies
over the last decade to reduce, adapt and better anticipate its
energy load on the power network. Well established techniques
such as building retrofitting [2], demand side management [3],
energy forecasting [4], and building to grid energy management
schemes emerging from model predictive control [5] or reinforce-
ment learning [6], have, and still are, at the center of a considerable
amount of attention from both research and industry. All, however,
require knowledge of the building thermal dynamics in order to
effectively perform, consequently placing our ability to effectively
identify building thermal behavior(s) as the backbone of building
applications. Yet, despite its momentum, building modelling is still
faced with the fundamental challenge of scaling across the hetero-
geneous building stock, and relies primarily on assumptions rather
than field performance data.

Main existing modeling methods can be divided in three pre-
eminent categories: physics-based methods (white-box), purely
data driven (black-box) and hybrid approaches (grey-box) [7].
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The first, physics and knowledge-based models, solves mathemat-
ical equations based on physical laws to characterize the energy
behavior of buildings. They require exhaustive information on
the building and are usually mathematically complex. Yet, they
can yield high accuracies if calibrated correctly and are often
employed in building performance simulation softwares, e.g.,
Energy-Plus [8], or using powerful modelling languages, e.g.,
Modelica [9]. White-box modeling, however, is time-consuming
with performances largely depending on accurate energy model
calibration consequently making it difficult to scale-up. It requires
the definition and update of many input parameters along the
building’s lifetime [10], a process reliant on expert analysis that
needs repetition for every considered building. Moreover, their
copious amount of parameters makes white-box models non struc-
turally identifiable, which often becomes problematic when an
unknown parameter needs estimating. The second category consti-
tutes data driven models, often referred to as black-box models.
They consist of statistical regressions and machine learning algo-
rithms typically fitted on the input and output time-series data
of the system. Its ’black-box’ analogy stresses the relationship
between model input and output as being hardly transposable to
physics-based analysis, making it challenging to produce inter-
pretable models [7]. While significant developments in this field
might alleviate the persisting barriers of domain knowledge inclu-
sion or interpretability, progress is still desperately needed for
trust-worthy and scalable applications within the building sector.
Lastly, machine learning approaches require large amounts of
quality data to guarantee satisfying accuracies of models from
training. This implies data consistency, assessing coherent match-
ing of various attributes, data completeness (no missing values)
and accuracy (absence of outliers) [11]. Finally, grey-box models
work as a hybrid approach between the aforementioned data-
driven and physics-based models. This approach profits from dom-
inant physical properties of the system to build the model struc-
ture while employing measurements to fix the model
parameters. A common approach to modeling building heat
dynamics adopts lumped resistance-capacity models, i.e. RC mod-
els, resulting in an electric circuit representation of the thermal
conditions of the building [12]. In this way, grey-box approaches
capitalize on the inclusion of physical knowledge in their models.
This results in smaller amounts of required experimental data to
train the model compared to black-box, thus making grey-box
models better at generalization while staying interpretable [13].

A common problem with model identification lies in finding a
model in agreement with both the physical reality as well as the
level of information embedded in the data, meaning the model
should avoid both under-fitting and over-fitting themeasurements.
To tackle this, Bacher and Madsen [14] suggested an extensive
stochastic model identification procedure to identify building heat
dynamics from numerous RC models of different orders. Models
were evaluated based on likelihood ratio tests and selection proce-
dure was carried out through significance improvement evaluation
from simpler to more complex models, to avoid over-fits in the
model selection phase. It was argued by Yu et. al. [10] that first-
and (simple) second-order models are sufficient to capture the
thermal dynamics of buildings to fend off the aforementioned prob-
lem. The research foundation for this claim is, however, built upon
findings emerging either from simulated data sets or fairly simple
and isolated single building measurements. Our intuition would
argue that to determine the dynamics of real-world occupied build-
ings frommeasurements, larger model orders are not only relevant
but necessary to encapsulate the, often different, thermal inertiae of
buildings and bring forth most-needed comprehensive thermal
behavioral insights. Assuming low-order models without the con-
sideration of higher-order ones is, within our field, a judgmental
bias that desperately needs tackling. As of today, there is very little
2

work studying building model identification from large and occu-
pied building stocks. Hossain et. al. [15] notably evaluated the per-
formance of Bayesian neural networks for nRnC grey-box thermal
model identification from 8’834 Canadian homes with 3 months
worth of data. Their study demonstrated the value brought by
transfer learning for smaller available building data sets as well
as the overall better performance of their Bayesian approach to
other black-box models based on root-mean squared error-
metric. Yet, R and C parameters of the fitted models could not be
uniquely identified. This, prevents the physical interpretation of
parameters in the model evaluation phase, a step most studies do
not comment on, along with the identifiability of their assumed
model structures as mentioned by Deconinck and Roels [16].

1.1. Motivation

This paper proposes to put forth an automated model selection
and evaluation procedure for stochastic model identification of
building heat dynamics, providing a much needed scalable method
tailored to the existing heterogeneous residential building stock.
Leveraging the procedure proposed by Bacher and Madsen [14],
RC models of rising complexity are evaluated over 247 Dutch res-
idential buildings. Identified thermal parameters are then exam-
ined and employed to support building envelope performance
analysis; providing large scale, non-intrusive insulation insights
into the existing building stock. Important application perspectives
to the approach are finally provided illustrating the impact of
building model identification from measurements at scale.

The rest of the article is organized as follows. Description of the
applied grey-box method, along with the proposed model selection
and evaluation procedure is described in Section 2. Section 3 pre-
sents the implementation specifics of the work where building
stock and climate characteristics are reported. Section 4 details
the results of the model selection and evaluation procedure
together with estimated parameter characteristics and building
envelope performance benchmarking. Lastly, application perspec-
tives are detailed in Section 5, and Section 6 concludes the article.
2. Methodology

This section first describes the formulation of stochastic differ-
ential equations for building heat dynamics modeling. Evaluated
RC models are then detailed followed by the automated model
selection and evaluation procedure.

2.1. Grey-box models of a dynamic system

Using prior physical knowledge as well as information embed-
ded in data, grey-box models are established by sets of partially
observed first-order stochastic differential equations, also referred
to as stochastic linear state-space models in continuous-discrete
time. These equations describe lumped RC models of the heat
dynamics of the building. Typically building thermal models con-
sider the heat exchanges between inside and outside conditions,
i.e., temperature differences, solar radiation gains but can also
include long wave radiations, as well as convection and infiltration
driven by wind-speed if available data permits it [17]. The building
envelope consequently embodies the most crucial component of
the model, regulating heat transfers between these two environ-
ments. Further, diverse indoor components such as space-heating
inertia, measurement errors present in the input variables and
additional building zones are modelled using additional tempera-
ture state points.

We refer to the work of Bacher and Madsen [14] for the devel-
oped models as well as their evaluation and selection procedure. A
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typical first-order stochastic differential equation can be expressed
as

dTi ¼ 1
RiaCi

Ta � Tið Þdt þ 1
Ci
Uhdt þ 1

Ci
AwUsdt þ ridxi; ð1Þ

where T, R and C refer to temperature, resistance and capacitor
respectively, while U is an energy flux and Aw the window area.
The subscript i points to the inside temperature, while a refers to
the ambient temperature, h to the heater and s to solar. x describes
a standard Wiener process, and r stands for the incremental vari-
ances of the Wiener process which encapsulate model approxima-
tions and non-recognized or modeled phenomena [18].

This physical part of the model is coupled to a data-driven one,
linking the data observations to the model for parameter estima-
tion. The discrete time measurement equation is

Yt ¼ Ti;t þ et; ð2Þ
where t is the measurement point in time, Yt the measured interior
temperature and et is the measurement error [18], assumed to be
Gaussian white noise as the fitted model accurately captures the
dynamics of the system. With observations represented by

YN ¼ YN;YN�1; . . . ;Y1;Y0½ �; ð3Þ
the maximum likelihood estimates of the grey-box model parame-
ters can be identified from the joint probability density [19]

L h;YNð Þ ¼
YN
k¼1

p YkjYk�1; hð Þ
 !

p Y0; hð Þ; ð4Þ

where p YkjYk�1; hð Þ represents the conditional density designating
the probability of observing Yk given the preceding observations
and the parameters h, and where p Y0; hð Þ is a parameterization of
the starting conditions. This is done by introducing an expected
value of the initial states and the associated covariance matrix.
Maximum likelihood estimates of the parameters can then be found
from

ĥ ¼ argmax
h

L h;YNð Þf g; ð5Þ

which can be calculated using an optimization algorithm over a Kal-
man filter. We refer to the work of Kristensen et al. [19] for a
detailed description of the approach.

2.1.1. Applied models
This study considers grey-box models ranging from the simple

first order Ti model, explicitly described in Eq. (7), where the inside
temperature state-point Ti and its RC parameters Ria and Ci are
solely treated, to 5th order ones, where the addition of sensor Ts,
medium Tm, heater Th and building envelope Te state points along
with their respective RC parameters each add a variety of model
extensions to choose from. Additionally, the building envelope
component proposes additional parameter extensions modeling
direct inside to outside heat exchanges and facade solar gains,
which are here considered as a block extension AeRia.

The full model TiTmTeThTsAeRia is visually displayed in Fig. 1 and
the set of stochastic differential equations describing its heat flows
in continuous time are [14]

Sensor : dTs ¼ 1
RisCs

Ti � Tsð Þdt þ rsdxs; ð6Þ

Interior : dTi ¼ 1
RisCi

Ts � Tið Þdt þ 1
RimCi

Tm � Tið Þdt

þ 1
RihCi

Th � Tið Þdt þ 1
RieCi

Te � Tið Þdt þ 1
RiaCi

Ta � Tið Þdt|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Riacomponent

þ 1
Ci

AwUsdt þ ridxi; ð7Þ
3

Medium :dTm ¼ 1
RimCm

Ti � Tmð Þdt þ rmdxm; ð8Þ

Heater :dTh ¼ 1
RihCh

Ti � Thð Þdt þ rhdxh; ð9Þ

Envelope :dTe ¼ 1
RieCe

Ti � Teð Þdt þ 1
ReaCe

Ta � Teð Þdt þ 1
Ce

AeUsdt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Aecomponent

þredxe;

ð10Þ

where the subscripts s,m, and e point to sensor, medium and envel-
ope components respectively. The discrete time measurement
equation is

Yt ¼ Ts;t þ et ; ð11Þ
as observed temperature is encumbered with measurement error.
We refer to an applied model as a combination of its corresponding
state-point(s) Tx component and block model component extension
AeRia, highlighted in the under-brackets of Eqs. (7) and (10). For
example, the model TiTeTh comprises the first order model Ti with
envelope Te and heater Th component extensions, but without the
inclusion of the AeRia block extension of the envelope. For a detailed
description of the models, the reader is suggested to refer to the
work of Bacher and Madsen [14].

It should be noted that while our approach proposes to apply
the RC models put forward by Ref. [14], our proposed automated
model selection and evaluation procedure, describe in the follow-
ing subsection, can be applied to any set of increasing complexity
of grey-box models.

2.2. Automated model selection and evaluation procedure

The scaling up of grey-box approaches for automated model
selection can be challenging. Initial values of parameters are usu-
ally tuned to the case study from expert inspection while model
extensions are iteratively built and evaluated. Here we present
the proposed model selection and evaluation procedure.

2.2.1. Model selection
The model selection procedure employs a likelihood ratio test to

statistically determine whether a more complex model performs
significantly better, or not, compared to a simpler, sub-model. Like-
lihood ratio tests are particularly effective at comparing two com-
peting statistical models with no unknown parameters and have
been demonstrated by the Neyman-Pearson lemma to have the
highest statistical power amongst all other contestants [20]. This
implies that the test is able to make the most efficient use of the
available data. A forward selection procedure is proposed begin-
ning with the simplest feasible model, Ti, and extending it itera-
tively with the component presenting the most significant
improvement. The procedure terminates when no model extension
yields a p-value below the pre-specified limit, commonly fixed at
5%. Possible candidates for model improvement are selected from
a set of predefined extensions, resulting from the combination pos-
sibilities of the different considered model components, i.e.,
Te; Th; Tm; Ts;AeRia. Fig. 2 presents the overall model selection
scheme. Possible model combinations are mapped and linked,
visually exposing the different existing paths of the forward selec-
tion procedure. The process has been adapted from [14] to assure
more coherent ranges of evaluated parameters within each itera-
tion phase.

2.2.2. Model evaluation
Finally, we extend the existing model evaluation phase of [14]

to render the process suitable for automated deployment. This last
step leverages the commonly employed qualitative appreciation of
model fits from cumulated periodograms of the residuals. A peri-



Fig. 1. The full model TiTmTeThTsAeRia with all considered model extension parts presented and individually indicated. The model consequently depicts all parts included in
any of the other applied models. Reprinted from the work of Bacher and Madsen [14] with the authors approval.

Fig. 2. Forward model selection scheme.
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odogram, or sample spectrum, is obtained by Fourier transforming
the autocovariance function of a stationary process [21]. Typically,
an appropriate model will produce residuals with Gaussian white-
noise properties, which in the frequency domain, denotes a theo-
retical constant periodogram [21]. Observing whether obtained
model residuals are located around this straight line, e.g. within
a surrounding confidence interval, consequently serves as an
appropriate indicator of a model’s quality.

By calculating the frequency differences between a selected
model’s Cumulated Periodogram (CP) and its confidence interval,
we obtain boundary excess values which, in turn, can be summed
into a unique numerical indicator, i.e., the Cumulated Periodogram
Boundary Excess Sum (CPBES). This indicator characterizes the
amount of auto-correlation present in the considered input time-
series, which implies white noise properties when close to zero.
4

CPBES consequently allows the differentiation of poor, suitable
and good models resulting from the previous forward selection
procedure. To allow fair comparisons of CPBES between times ser-
ies of different lengths we normalize it by length and obtain the
normalized CPBES (nCPBES).

Quite concretely, the CP is calculated from the normalized sum
of the Discrete Fourier Transform (DFT) of the time series

CP kð Þ ¼ 1
K

Xk
j¼1

jDFT xj
� �j2: ð12Þ

Here x denotes the input time series, k the considered Fourier
frequency of the periodogram, and K is the last Fourier frequency
of the domain, which corresponds to the times series length, i.e.
N, minus one. The periodogram confidence interval, or boundaries



J. Leprince, H. Madsen, C. Miller et al. Energy & Buildings 266 (2022) 112095
(B), are obtained from the Kolmogorov–Smirnov test for distribu-
tions at a given probability 1� að Þ [21]. The obtained bounds are
characterized from the slope and intersection coefficients

Bintersect ¼
ffiffiffi
2

p
� Ka � K � 1

2
� 1

� ��1=2

; ð13Þ

Bslope ¼ 2T; ð14Þ

where Ka is equal to 1.358 for confidence intervals of 95%, and T
corresponds to the period, or the frequency inverse, of the input
time-series [22]. Finally the nCPBES can be determined from:
CPBEðkÞ ¼ maxð0;CP kð Þ � Bslope � k� BintersectÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{top boundary excess

þmax 0;Bslope � k� Bintersect � CPðkÞ� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bottom boundary excess

; ð15Þ
nCPBES ¼ 1
K

XK

k¼1
CPBE kð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

CPBES

: ð16Þ

Fig. 3, illustrates how nCPBES is obtained from a given cumu-
lated periodogram. It should be noted than while nCPBES is suited
for automated model selection as a unique numerical indicator, its
cumulated periodogram or derived boundary excess curve still pre-
sent valuable qualitative information, indicating the frequencies of
the dynamics the model is not capturing. These can be employed
for in depth model analysis a posteriori to the automated model
selection process. For instance, the boundary excess curve of
Fig. 3 presents two lumps located around frequencies of 0.2 and
0.4 (2/h) which correspond to periods of 10 and 5 h respectively.
This allows the analyst to identify the frequencies of the dynamics
still present in the residuals which can later drive the design of
model extensions or suggest the need for additional
measurements.
3. Implementation

Our study considers a total of 247 homes located in the Nether-
lands, a European region under the Köppen climate classification
index [23] Cfb which describes mild temperate, fully humid and
Fig. 3. Model residual cumulated periodogram transformed to normalized Cumulate

5

warm summer regions. Anonymized measurements are collected
from the Toon smart-thermostats proposed by the energy distrib-
utor Eneco, with whom this work was carried out in collaboration.
Measured data include inside temperature and boiler (heater) set-
point temperature, at granularities of 15 min intervals. Few build-
ing meta-data are made available by users as self-reported infor-
mation such as building type, floor surface and family size.

Boiler set-point temperature can here be considered to act as
the centralized space heating input signal of buildings. Indeed, cen-
tralized heating systems of dwellings are commonly operated by
adjusting delivery temperatures, i.e., measured (boiler) set-point
temperature, while a pump maintains a constant pressure across
the building’s pipelines. This setup implies eventual non homoge-
neous power outputs throughout radiators, should their combined
valve positions be readjusted, even with fixed boiler set-point tem-
peratures. Commonly, though, radiator valves are set to fix posi-
tions by building occupants and house temperature is adjusted
directly from the thermostat. Such variations can therefore be con-
sidered negligible and the boiler set-point a good indicator of space
heating input signal.

Hourly weather data are collected from the publicly available
Royal Netherlands Meteorological Institute (KNMI) weather sta-
tions [24]. Stations are paired to each building thanks to a geo-
localisation process using 4 (over the 6) ZIP code digits; an aggre-
gation level that allows no anonymized user to be geographically
isolated nor identified. Fig. 4 shows the distribution of distances
between the building’s province and its nearest KNMI station.
Obtained distances are centered principally between 5 and
12 km, while a few larger distances can be found above 20 km.
While these measurements cannot encapsulate local weather con-
ditions particular to micro urban surroundings, they provide a suf-
ficient approximation of building outside conditions.

To capture the thermal dynamics of a building, we consider
minimum measurement periods of 2 months and limit the maxi-
mum times-series horizon to 4 months. We filter available data
to obtain the most recent continuous measurement period for each
d Periodogram Boundary Excess Sum (nCPBES) for automated model evaluation.



Fig. 4. Distance distribution between building province and its nearest KNMI
weather station, showcasing both a boxplot (top) and histogram (bottom) for a
more informed distribution appreciation.
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building resulting in periods ranging from February 1st to the end
of May 2021, which holds a notably cold start of spring season at
the beginning of April. Weather data are re-sampled to 15 min res-
olutions to fit thermostat measurements. While finer granularities,
typically 1 or 5 min, are better suited to capture the thermal
dynamics of building systems, 15 min resolutions are sufficient
to do so. Cumulative missing values larger than 2 h are imputed
while smaller gaps are interpolated via a moving average using a
window size of 8 h.

Grey-box models are implemented using the computer soft-
ware CTSM-R [25] developed at the Technical University of Den-
mark. It produces maximum likelihood estimates of model
parameters thanks to an optimization algorithm performed over
a Kalman filter. The code developed for this study is made available
under an open-access github repository, i.e. https://github.com/
JulienLeprince/fiftyshadesofgrey, to encourage dissemination and
support its reproducibility.

4. Results and discussion

We describe the outcome of the implementation section here
with a first model evaluation subsection. Estimated model param-
eters and highlighted links to building characteristics are then pre-
sented, followed by a final illustrative building performance
application, leveraging model parameter estimates for city-scale
building envelope insights.

4.1. Model evaluation

The normalized cumulated periodogram boundary excess sum
indicators are used to differentiate good from close and poor model
fits. Fig. 5 presents the cumulated periodogram, boundary excess
and nCPBES of all final models obtained from the forward selection
procedure. After an attentive inspection of the CPs and their
Fig. 5. Models residual cumulated periodograms, b

6

respective nCPBES, threshold values of 0.3 and 0.1 nCPBES were
fixed to differentiate regions of poor, close and good quality fits
as illustrated in Fig. 5. In total, 93 models are determined as good
fits, 95 as close fits and 59 are categorized as poor fits. It can also be
noted that most close fits present boundary excess lumps located
around frequencies of 0.15 and 0.4, which indicates that these
models are not capturing dynamics occurring at periods of 13
and 5 h respectively. Both these dynamics might be caused by
occupant usage of appliances generating heat inputs not covered
in the measurements, e.g., kitchen appliances. A 13 h period for
instance typically represents daily unoccupied residential
kitchen-usage schedules with morning to late evening activities,
i.e., 7:00–20:00, while a 5 h period corresponds better to an occu-
pied daily Dutch kitchen-usage schedule, where dinner is prepared
rather early, i.e., 7:00–12:00–17:00. In fact, findings from related
work, leveraging symbolic regression knowledge discovery on a
similar data set, revealed the preferred use of gas-meter measure-
ments over heat input signal for the heat dynamics identification of
24 of these buildings [26]. Indeed, Dutch homes typically employ
gas to supply both space heating and kitchen appliance needs. This
underlines the impact and importance of these appliances on
building heat inputs.

The forward selection paths adopted in the model selection
phase are illustrated in Fig. 6. These display an overall even distri-
bution of models amongst the 2nd iteration phase, with a slight
preference for TiTh models, while in the 3rd iteration phase,
TiTmTs comes out as the most likely choice. This seems to indicate
favored additional degrees of freedom around the inside tempera-
ture in the forward selection procedure. It can be noted that only
one AeRia envelope extension is selected out of the 2nd iteration
phase, yet more envelope model extensions are preferred in the
later phases of the selection. The 4th iteration distinctly denotes
TiTmTeTs as the most preferable choice, yielding a consequent share
of final models. Finally, the 5th and 6th iterations largely compose
final selected models with little to be noted from their selection
paths.

Identified models are presented in Fig. 7 along with their resid-
ual standard deviation, parameter significance, proportions of fit
quality as well as available building meta-information, i.e. home
size, home type and family size, which will be discussed in the fol-
lowing sub-section. Firstly, the standard deviations of obtained
model residuals serve to illustrate the amplitude of forecasting
errors produced. These range between values of 0.05 and 2�C for
the most extreme cases, and possess central tendencies grouped
between values of 0.1 and 0.2�C. The grouping of residual standard
deviations per model fit quality (top Fig. 7) clearly demonstrates a
decrease in residual amplitude as the fit increases in quality,
oundary excess curves and cumulated nCPBES.

https://github.com/JulienLeprince/fiftyshadesofgrey
https://github.com/JulienLeprince/fiftyshadesofgrey


Fig. 6. Flow diagram of forward model selection paths. The figure presents flows and nodes to illustrate the selection path of models, with their width being proportional to
the number of final models using this selection path. A final selected model TiTeTh for instance, could be obtained by a selection path either following Ti > TiTh > TiTeTh or
Ti > TiTe > TiTeTh . The width of the flows entering the designated TiTeTh node is therefore proportional to the number of final models considering the TiTeTh model in their
forward selection path. Nodes may possess fewer number of flows exiting it (right-hand side) than entering it (left-hand side). Taking the same example of the TiTeTh node,
this means the model TiTeTh was considered final for a number of cases proportional to the missing existing flow of the node. As the selection procedure moves forward (from
left to right), fewer flows are represented as more and more models are identified as final in earlier stages, consequently making the presented selection path-flows non-
conservative over the flow diagram.

Fig. 7. Identified models grouped per fit quality (top) and thermal model (bottom) with their respective residual standard deviation distribution, parameter significance,
iteration phase, modeling components (top) or model fit quality (bottom), meta-data proportions and counts. Residuals’ standard deviation values are displayed from violin
plots in panel one, while panel two depicts in a similar manner the distribution of parameter significance proportions per group. Panel three shows the iteration phase in
which the forward model selection procedure stopped, which are logically homogeneous for any given individual model (bottom panel). Panel four presents either the
proportion of model components across the groups (top) or model fit quality (bottom), as these are insights specific to their opposing panel. Panels five to seven offer the
proportions of available meta-data information as self-reported by occupants, namely home-size, family-size and home-type. Lastly, panel eight displays each groups’
respective number of members while highlighting the portion of meta information self-reported, or not, within them.
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although a larger tail persists amongst good model fits, compared
to close ones. It should be noted, however, that residual amplitudes
are an indication of the degree of noise variations present in the
measurements, and are independent from residual covariance,
i.e., model fit quality. A residential home with 4 occupants might
result in a larger amount of noise, i.e., higher standard deviations,
while possessing a thermal model accurately capturing all of its
7

dynamics, with residuals demonstrating white noise properties,
i.e., nCPBES close to zero. The aforementioned observation conse-
quently comes rather as a fortuity than the result of a correlation
between these two features. Secondly, parameter significance
reveals whether estimated model parameters exhibit substantially
likely probabilities and support the evaluation of model robust-
ness. The comparison of parameter significance grouped by model
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fit quality shows that good fits present slightly larger central ten-
dencies of significant parameter proportions compared to poor
and close fits, although all three groups present similar distribution
tails reaching down to 20%. Thirdly, the forward model selection
iteration phase proportions show no 1st order model selected as
best fit in either of the categories, and no 2nd order models are
either present in close and good model fits. This finding confirms
our initial assumptions that first- and second-order models would
not be sufficient to capture thermal dynamics of buildings. The
iteration proportions clearly display larger iteration phases becom-
ing more important from poor to good model fits, suggesting that
to obtain a good fit it is likely the model will be more complex.
Lastly, it is found that the four most considered models are
TiTmTeTsAeRia; TiTmTeTs; TiTmTeThTs and TiTmThTs, which all employ
the sensor, Ts, and medium, Tm, model components. The two lar-
gest of them notably possess the greatest proportion of good fits,
reaching 50%, while being sensibly similar models with common
components Ti; Tm; Te and Ts.

4.2. Parameters and building characteristics

Identified parameters and models coupled with available build-
ing characteristics constitute a valuable examination analysis that
has the potential to unveil meta-data links to exposed building
thermal dynamics. Estimated RC parameters are presented per
model component under Fig. 8 with highlighted model quality fit
and parameter significance. It displays thermal capacities of sensor
and heater components as relatively aggregated around 0 kWh/K,
while medium and envelope capacities are relatively split between
their lower upper bound values, 0 and 20 kWh/K respectively. On
the other hand, resistance estimates are mostly comprised
between values of 0 to 5 K/kW at the exception of Ria which
spreads quite evenly from 0 to 50 K/kW. The scatters show no
apparent correlation between estimated parameter values and
their relationship to fit quality or significance.

The building meta-data distributions of Fig. 7 reveal that poor to
good model fits possess increasing proportions of smaller home
sizes along with larger shares of family sizes of 2. This supports
the intuitive thought that smaller, thus simpler, residential homes
are more likely to result in good model fit.

4.3. Building envelope performance

Identified building heat dynamics can be leveraged to calculate
building envelope insulation properties such as the Heat Transfer
Coefficient (HTC). HTC is defined in ISO 13789:2017 [27] as the
heat flow rate from the internal air mass to the surrounding exter-
Fig. 8. Scatter plots of RC parameter estimated per model component, with model fit qua
close fits are here grouped together with poor fits, while the scatter point crossover
parameters are so.
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nal environment divided by the indoor-outdoor air temperature
difference [28]. Its estimation is obtained from the sum of heat
flow rates due to ventilation UAV , and transmission UAT , which
includes plane building envelope elements as well as thermal
bridges. Linking these elements to the identified thermal resis-
tances R of the model, the HTC can be derived from [10]

HTC ¼ 1
1

UAie
þ 1

UAea

zfflfflfflfflfflffl}|fflfflfflfflfflffl{UAT

þ UAia

zffl}|ffl{UAV

WK�1
� 	

; ð17Þ

HTC ¼ 1
Rie þ Rea|{z}

8Te2M

þ 1
Ria|{z}

8TeRia2M or TeRM

WK�1
� 	

; ð18Þ

where M stands for the model component ensemble of the final
selected model. HTC can be expressed in absolute units, i.e., W/K
as defined above, or in useful floor area relative units, i.e., W/
(K�m2) as recalled in ISO 52016:2017 [29] with

HTCnorm ¼ HTC
Ause

WK�1m�2
� 	

; ð19Þ

where HTCnorm refers to the area normalized HTC and Ause to the
total useful floor area of the considered building. The latter natu-
rally being better suited to benchmark insulation performances
thanks to building floor surface independence.

With useful floor area unavailable across this study’s building
stock however, we proceed to identify absolute building HTCs
and total thermal capacities jointly. This allows a relatively fair
comparison of building thermal properties together. Indeed, inves-
tigating these parameters by pair presents the advantage of provid-
ing a complete overview of a building stocks’ thermal properties.
The inclusion of total thermal masses in this frame puts the abso-
lute HTC into perspective while providing an efficient way to iden-
tify groups of similar buildings, as well as singling-out poorly
insulated home envelopes for instance. Fig. 9 presents these iden-
tified characteristics along with highlighted building type and poor
quality fits. Results show a strong concentration of total thermal
capacities between values of 20 and 24 kWh/K with few values
reaching above 40 kWh/K and below 10 kWh/K. HTCs present a
strong positively skewed distribution, mostly concentrated
between 0.02 to 0.05 kW/K, with a smaller peak centered around
0.1 kW/K. The scatter reveals a main cluster of points originating
from the strong concentrations of both thermal parameters around
their central distributions. Building types do not appear correlated
to the presented thermal properties. A larger share of isolated
dwellings (town building type) are present at the center of the clus-
ter, yet their vast larger proportion within the data set biases this
lity and parameter significance. Good from poor model fits are differentiated, where
between two parameters will be considered significant only if both represented



Fig. 9. Scatter plot of building envelope Heat Transfer Coefficient (HTC) versus sum of total heat capacities, with highlighted building types. Poor model fits here englobe both
close and poor fits.
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observation. Identified good model fits presenting HTC values
above 0.20 kW/K can thus be considered of poor thermal insula-
tion. This constitutes a non-intrusive, scalable and quite simple
building envelope characterization which can support city-scale
building stock analytics. Retrofit potentials could consequently
be evaluated from the granted insights and provide users with
impactful energy saving opportunities from recommended insula-
tion upgrades.
5. Applications and outlooks

The development of methods that focus on the scalability of
analysis across the building stock unlocks the potential of several
important applications. The results of this method illustrate its
effectiveness on a set of buildings that could be replicated in other
contexts. This section outlines a review of those results related to
several applications.
5.1. Building performance benchmarking

Benchmarking the building stock enables the owners and occu-
pants to understand how their building compares to its peers.
Defining just what a peer is for a certain building is a challenge
in itself. A certain amount of metadata, or characteristic attributes
are necessary to undertake fair benchmarks between buildings.
Notable building geometry-related characteristics proportionally
influencing heating and cooling demands encompass area to vol-
ume ratios such as shape factor, i.e., an envelope surface to heated
volume [30] or surface [31] ratio. Yet the collection of these infor-
mation at scale is tedious [32]. The automated creation of dynamic
models could enhance this process by enriching existing metadata
with identified building thermal properties [33], ranging from
9

model structures to parameter estimates which could be employed
within the benchmarking process.

For instance, building performances are typically evaluated
from key performance indicators (KPI) such as CO2 emissions
reductions, energy costs savings, energy balance, thermal/light
comfort, system efficiency or peak demand reduction [34]. A com-
mon approach employed to compare the energy performance of a
heterogeneous building set consists in area-normalizing their
respective energy consumption [35]. However, floor surface does
not provide a complete characterization of a building’s thermal
mass. Knowledge of buildings thermal capacities can provide a
much richer description of their heating and cooling inertiae for
fairer thermal load comparisons. Building thermal capacities C
can either encapsulate their internal environment with units in J/
K, or air and furniture areal capacity considering units of J/(K�m2)
[29]. The latter, similarly to HTCnorm, includes useful floor area
information and can serve in benchmarks for the consideration of
not only building thermo-physical properties, but also geometry.
When undertaking such energy performance benchmarks, heating
and cooling demands Ud could consequently be normalized as
follows,

Ud;norm ¼ UdX
j

Cj

ð20Þ

where Ud;norm here either stands for the internal environment capac-
ity normalized heat load of a building, with C in J/K and Ud;norm in K/
s, or the air and furniture areal capacity normalized heat load, with
C in J/(K�m2) and Ud;norm in km2/s. The subscript j refers to the com-
ponents of the fitted grey-box model.

This scaling approach makes it possible to compare design
assumption, i.e., useful floor area, with field performance, i.e.,
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heating/cooling demands, at scale. Indeed, through the inclusion of
building geometry information in the scaling process of identified
thermal characteristics, it becomes possible to compare actual
building thermo-physical properties to design parameters from
technical standards on a building stock level.

5.2. Building stock scenario modeling

One of the key benefits of white box modeling is the ability to
test possible future scenarios of performance enhancement [36].
Undertaking this effort on a large building stock is a significant
challenge [37]. The automated creation of physics-informed mod-
els enables this in a scalable and effective way, allowing renovation
influences or policy decisions impact assessments up-to a city or
district-scale. This type of effort has been explored on non-
residential buildings in the direction of inference of higher granu-
larity data from annual and district-level public data [38]. Quite
concretely, one could imagine varying identified HTC distributions
within the building stock to predict insulation renovations impact
on thermal loads.

5.3. Decomposition of energy meter into end-use loads at a city-level

The integration of more dynamic influences on energy grids
from renewable sources such as wind and solar have a significant
impact on their operation. The ability to characterize, at scale,
energy consuming dynamics of large numbers of buildings can
improve optimal grid operations. Policies aiming at enhancing grid
stability using technologies like storage unavoidably profit from
more accurate energy demand characterizations [39]. Additionally,
the decomposition of energy-meter information into load influenc-
ing factors sets the foundations to factor-dependent energy predic-
tions, which support scenario-specific predictions at city-level. For
example, with identified climate’s influence on overall building
stock load one could predict how a city’s energy demand might
change under varying weather scenarios, or account for per-
factor uncertainties in forecasted values for a resilient and optimal
operation of the energy system. Further innovations in this direc-
tion can support efforts from the literature focusing on model
development using large, open data sets from energy disclosure
programs [40,41] or from geospatial sources [42] for instance.

5.4. Demand side management

Identified thermal dynamics may also be leveraged to evaluate
the energy flexibility potential of buildings. Indeed, the derivation
of a system’s time constants, which characterize the dynamic
response of the considered system, can be determined based on
estimated parameters [18]. These time constants can notably pro-
vide information about the building’s reaction to affecting variable
changes, namely weather conditions and heat inputs. The work of
[33] exemplifies this process on a data set of 39 Danish residential
buildings. From identified thermal dynamics it formally links esti-
mated time constants to each building’s energy flexibility poten-
tial. Proposing scalable methods to evaluate the dynamic
response of the building stock is a crucial step that our work opens
the door to for developing more effective demand-side manage-
ment strategies.
6. Conclusion

This work puts forward an automated stochastic model identi-
fication approach for building heat dynamics, suited for scalable
deployment. It proposes a forward model selection procedure
adapted from [14] and extended with a novel residual auto-
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correlation indicator, i.e. the normalized Cumulated Periodogram
Boundary Excess Sum (nCPBES). This indicator allows automated
classification of identified models into groups of fit-quality. Out
of the 247 buildings the approach was tested on, 93 model fits
were identified as good, 95 were classified as close while 59 were
designed as poor. Good model fits presented overall larger shares
of model complexities and parameter significance along with smal-
ler reported building surfaces and family sizes compared to poor
and close model fits. Estimated RC parameters presented no nota-
ble tendencies when compared to model fit qualities or their sig-
nificance. We examined thermal properties of the building stock
by visualizing their total thermal capacities and respective HTC.
A main cluster of buildings with similar properties is clearly
observed suggesting a large share of buildings possessing similar
thermal characteristics. Finally, we discussed how the proposed
approach is valuable to the building sector. In particular, how
automation and scalable solutions for building stock model identi-
fication can support in an unprecedented way applications such as
building performance benchmarks, city-scale scenario modeling,
energy dissagregation to building end-loads and large scale
demand-side management.
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