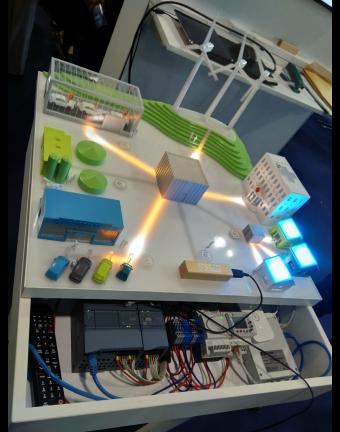
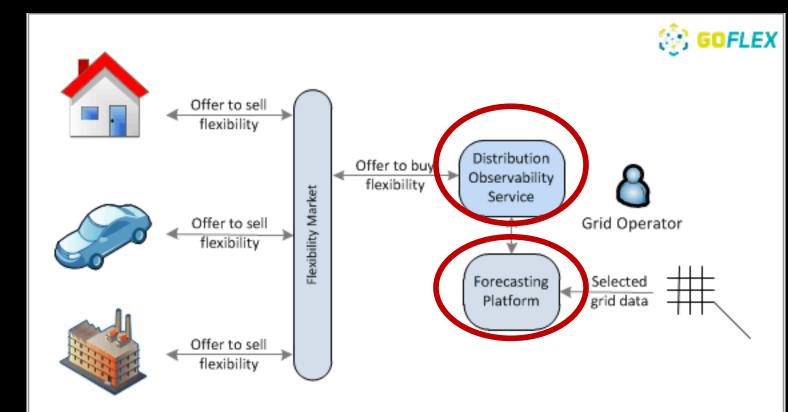


The GoFlex project

- EU-funded H2020 research project
- Develop solutions to enable an energy flexibility market
 - Distribution grid operator (DSO) buys flexibility to solve for local grid congestions
 - Accommodate larger shares of distributed (renewable) energy generation
- 3 demonstration sites at DSOs in Cyprus, Switzerland, Germany
- IBM developed
 - Scalable energy forecasting platform
 - AI-based grid modelling for DSO bidding decisions

https://www.goflex-project.eu/





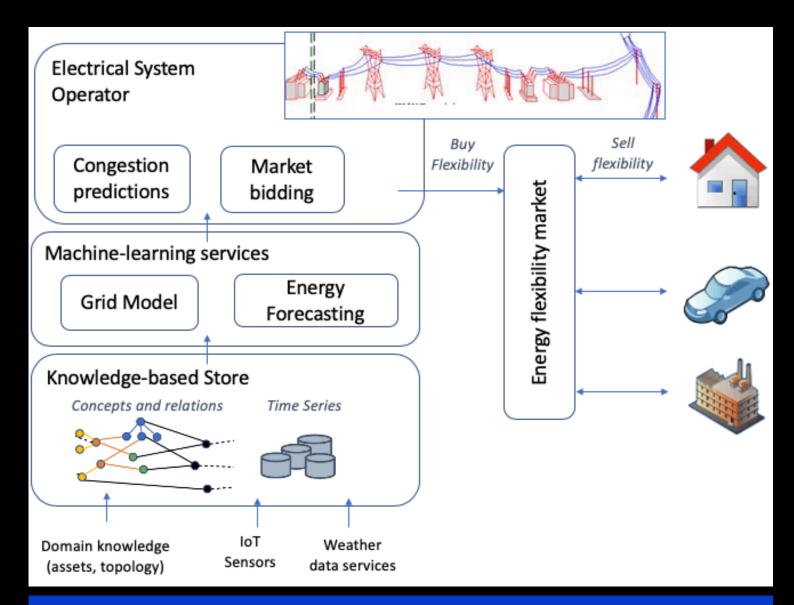
The GoFlex project

Scalable energy forecasting platform

- Collect IoT sensor data
- Run time-series forecasting models of distributed consumption and generation

AI-based grid modelling

- 1. Predict grid issues
 - Input is energy forecasts
 - Estimate impact on the grid (load, voltages)
 - Compare with user-defined tolerance
- 2. Predict required flexibility
 - Input is desired profile (load, voltages)
 - Estimate amount of energy flexibility (increase/decrease) to follow profile

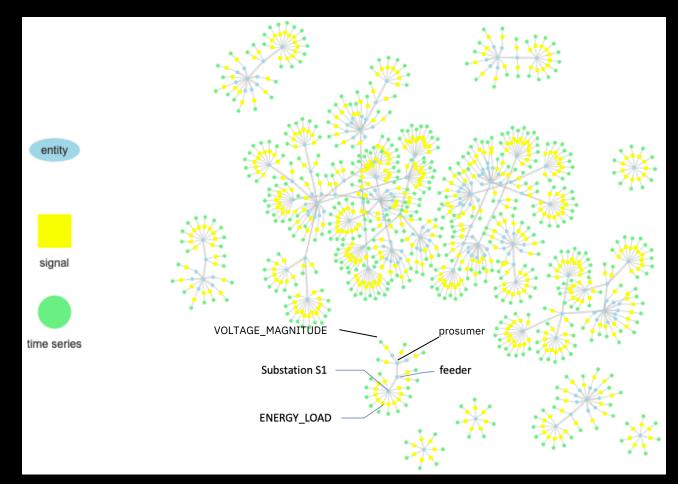


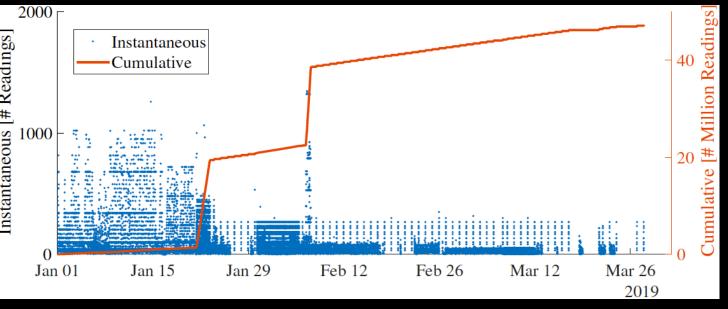
Leverage IoT data semantics:

- **Scaling and Automating** time-series forecasting models
- Incorporate domain knowledge in AI Modelling

Scalable time-series forecasting platform

- GoFlex use-case
 - Collect IoT data from prosumers, SCADA (1000+ points every 15 min)
 - https://github.com/GoFlexH2020/samples
 - Live energy forecasts
 - Distributed energy consumption and generation (solar, wind) at 200+ points
 - Refresh hourly for 24-hour windows at 15minute time resolution
 - Continuous trial operation from Jan 2019 to March 2020

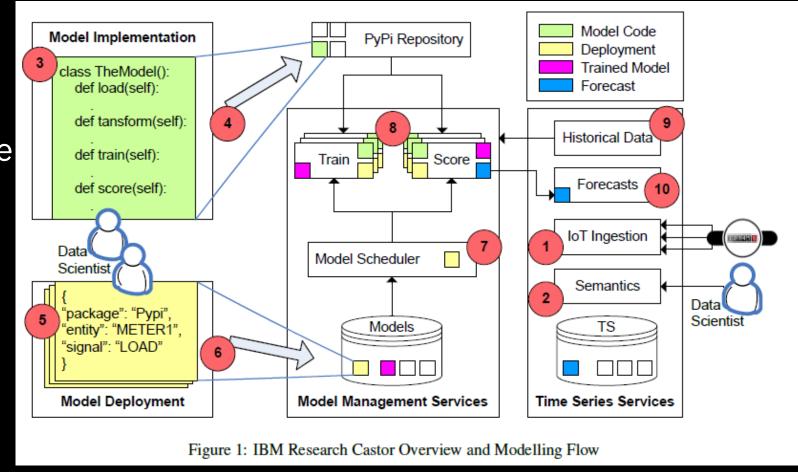




IBM Research Castor:

Scalable time-series forecasting platform

- IoT and semantic data management, deployment of AI time-series models on the Cloud
- Built-in parallelization and potentially infinite horizontal scalability
- Programmatic deployment of AI models based on semantics for model reuse and automation
- Full lineage of timeseries data, model forecasts, model (re-trained) versions.
- Transparent, customizable modelling ecosystem, supporting Python / R



Built on the IBM Cloud

- Live time-series data ingestion
- 2 Application semantics
- Oevelop / customize AI models

- **5 6** Deploy AI models
 - 7 8 Automatic execution of model train/score jobs
- 9 Automatic persistence trained model versions, timeseries predictions

IBM Research Castor:

Scalable time-series forecasting platform

- Separation between implementation and model deployment
 - Implement modelling steps (feature engineering, model selection, etc.) based on abstract <u>semantic context</u> ("solar generation", "substation load", ...)
 - Specify semantic context instance in deployment configuration
- Implement one model, deploy many (automate)

```
Listing | Model Implementation Pseudocode
class MyModel (ModelInterface):
  def init (self, context, task,
                  modelId, modelVersion,
                  user params)
  def load():
    x = getTimeseries(context.entity,
                         context.signal,
                         start, end)
    w = getWeather(context.entity.lat,
                      context.entity.long,
                      start, end)
  def transform():
    x = merge(x, w)
    x = align data (x, user params.frequency)
    generate_lagged_features(x)
     // other features
  def train():
    start, end = user params.train period
    self.load(), self.transform()
    return(LinearRegression.fit(x))
  def score():
    start, end = now(), now()+dt(hours=24)
    self.load()
                 Listing 1 Example of Model Deployment Configuration
    return ( moc
                     "context": {"entity": <value>, "signal":<value>}
                     model_name : <value>,
                    "dist_name": <myModelCodePackage>,
                    "dist_ver": "1.0.0".
                    "module": <myModelCodeRoutines>,
                    "training_deployment": {
                       "time": "2019-03-01T00:00:00+00:00",
                       "repeatEvery": "1_week" },
                    "scoring_deployment": {
                       "time": "2019-03-01T00:00:00+00:00".
                       "repeatEvery": "1_hours" },
                    "user_parameters": {
                       "frequency": "15T,
                       "train_time": {"2018-01-01", "2019-01-01"} },
```

IBM Research Castor:

Scalable time-series forecasting platform

- The GoFlex use
 - Approx. 250 models running live every 15 min

- Scalability tests
 - Up to 27K jobs / hour at no performance degradation

Site	# Sensors	# Models	Execution [s]
Germany	18	11	16.8
Switzerland	196	61	19.7
Cyprus	531	174	15.9

Table 2: Size and performance in deployed systems. Model execution refers to the average duration of a scoring job.

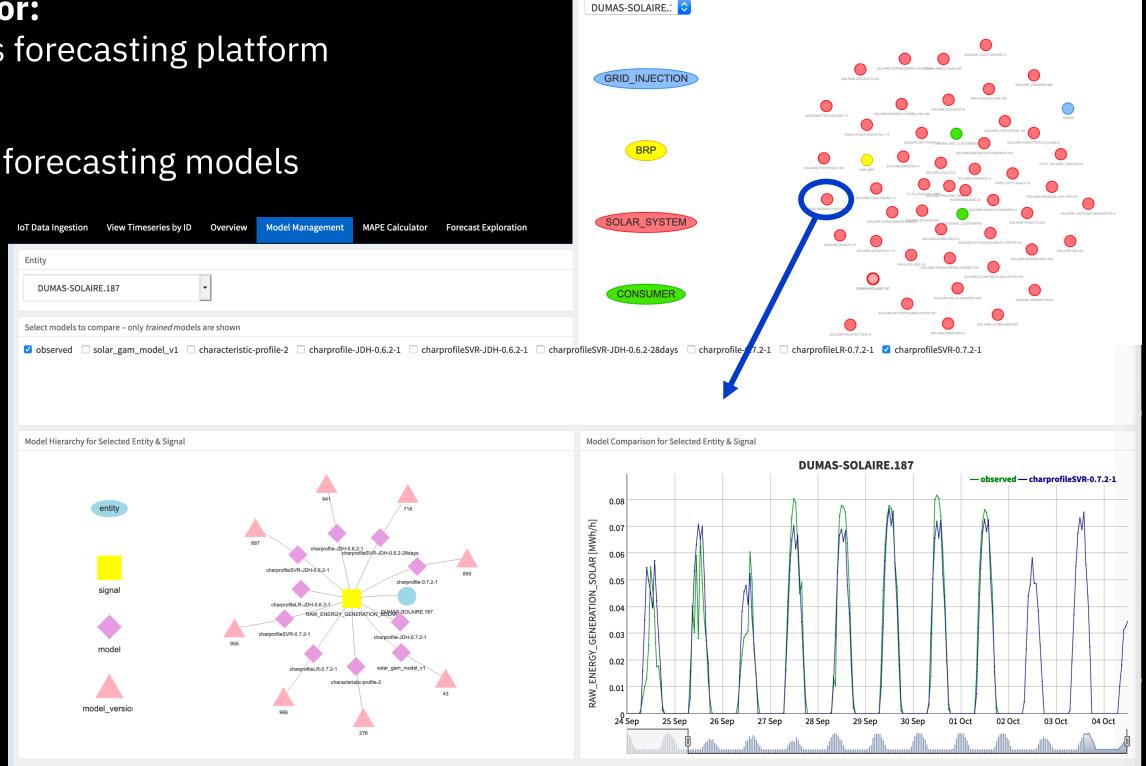
Parallel Jobs	# Jobs/hour	Job Duration [s]
10	5,600	6.4
50	18,900	9.5
100	22,300	16.1
150	26,900	20.1
175	27,600	22.8
200	26,700	27.0

Table 3: System scalability analysis.

Eck, B. and Fusco, F. and Gormally, G. and Purcell, M. and Tirupathi, S. "Scalable Deployment of AI Time-series Models for IoT". AI4IoT Workshop at IJCAI 2019

IBM Research Castor:Scalable time-series forecasting platform

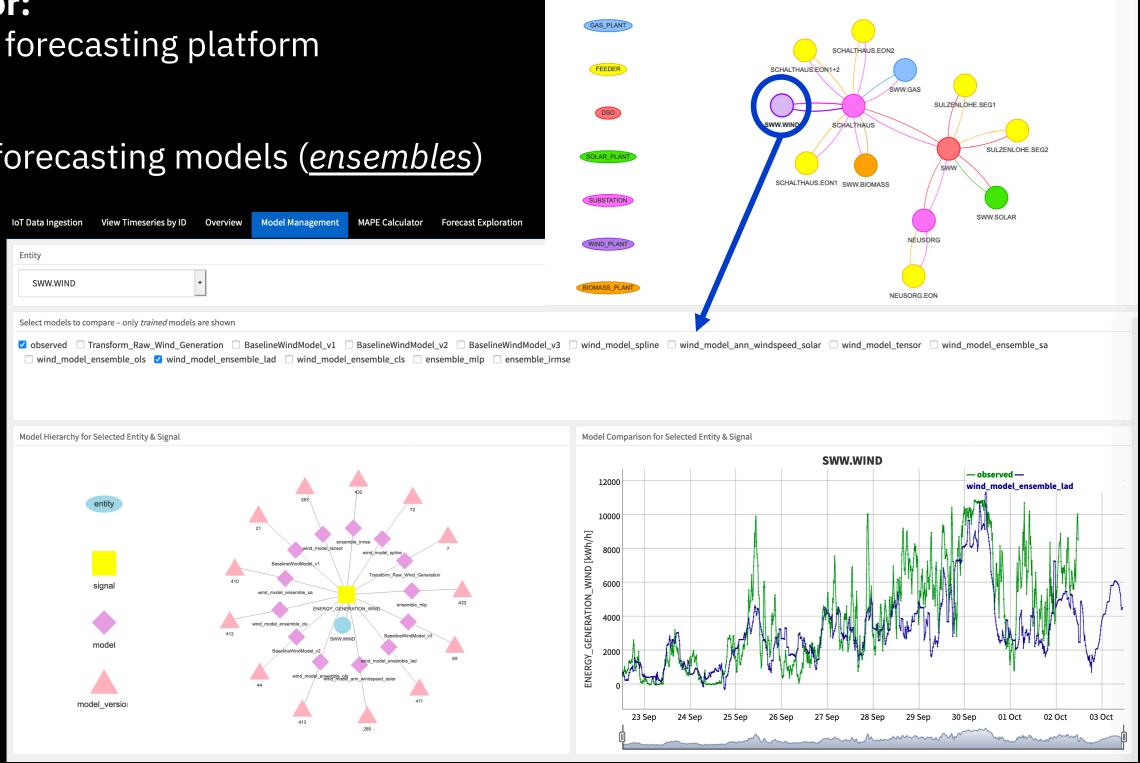
Example of solar forecasting models



Logical View of Entities

IBM Research Castor: Scalable time-series forecasting platform

Example of wind forecasting models (ensembles)



Logical View of Entities

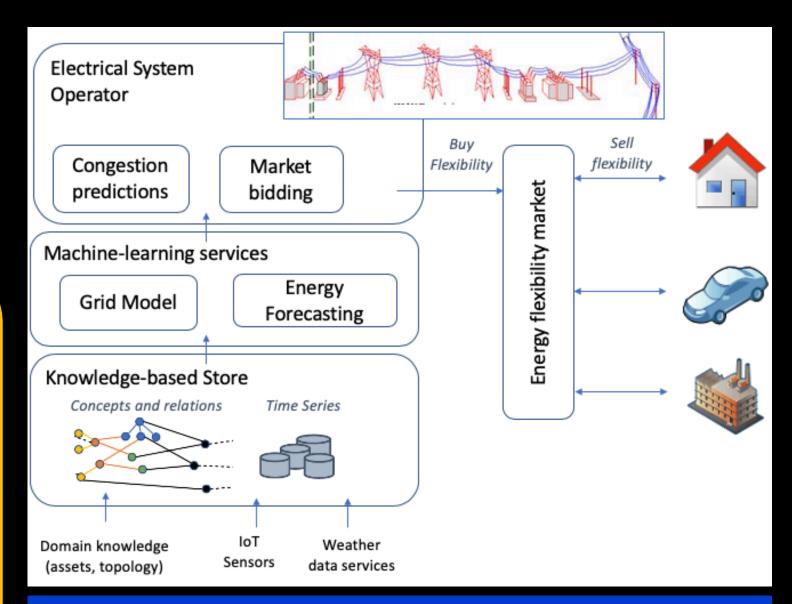
SWW.WIND

The GoFlex project

- Scalable energy forecasting platform
 - Collect IoT sensor data
 - Run time-series forecasting models of distributed consumption and generation

AI-based grid modelling

- 1. Predict grid issues
 - Input is energy forecasts
 - Estimate impact on the grid (load, voltages)
 - Compare with user-defined tolerance
- 2. Predict required flexibility
 - Input is desired profile (load, voltages)
 - Estimate amount of energy flexibility (increase/decrease) to follow profile

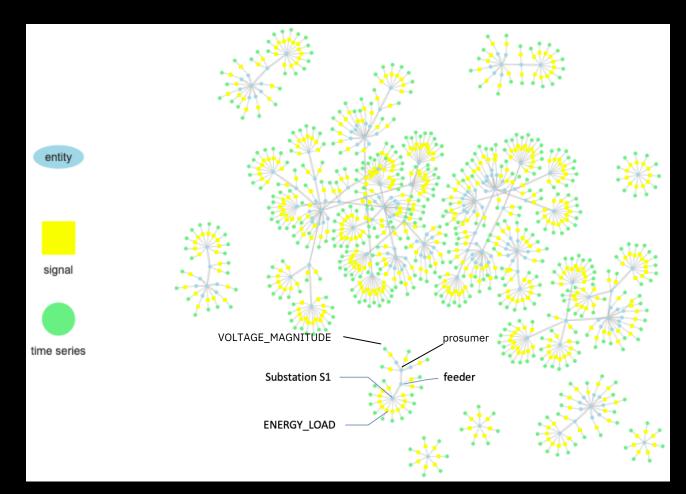


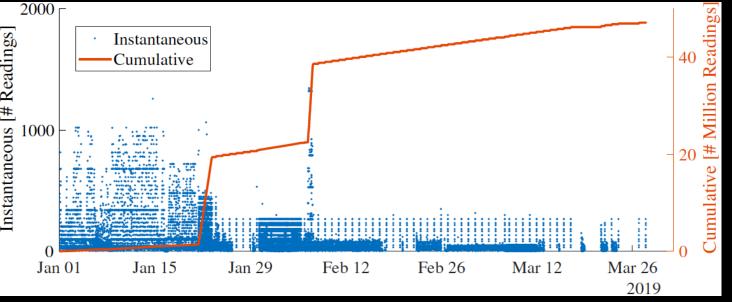
Leverage IoT data semantics:

- **Scaling and Automating** time-series forecasting models
- Incorporate domain knowledge in AI Modelling

AI-based grid modelling

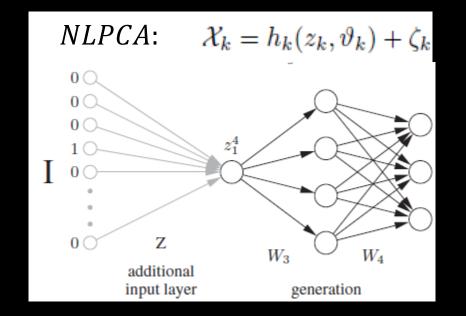
- GoFlex use-case
 - Predict impact of distributed energy generation on grid assets (e.g. voltage, line loading)
 - Estimate required flexibility for desired asset behavior (e.g. voltage profile)
- Limitations of power-flow models
 - Require detailed, accurate physical parameters
 - Difficult to maintain under changing grid
- AI-based modelling
 - Leverage sensor data
 - Don't ignore available knowledge, however incomplete (connectivity, physics)

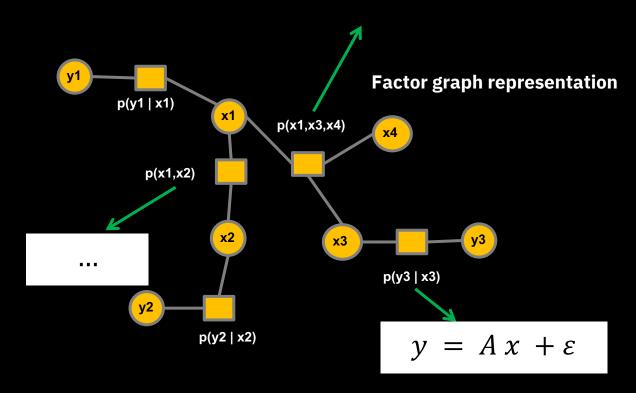




- (Gaussian) Probabilistic Graphs (*)
 - Embed domain knowledge (factorization)
 - Flexibility: extend as needed, grow with the data
 - Modularity: model different subsets of variables as desired (e.g. combine physics-based models and ML models)
 - Scalability: Sparse model
 - Naturally handle missing data: Use the same model for prediction or simulation problem

$$p(\mathcal{X}, \mathcal{Y}) = \prod_{m=1}^{M} p(y_m | \mathcal{X}_m) \prod_{k=1}^{K} p(\mathcal{X}_k)$$





Gaussian assumption:

$$p(\mathcal{X}, \mathcal{Y}) \propto \prod_{m=1}^{M} e^{-\frac{1}{2}[y_m - f_m(\mathcal{X}_m)]^{\top} R_m[y_m - f_m(\mathcal{X}_m)]} \prod_{k=1}^{K} e^{-\frac{1}{2}g_k(\mathcal{X}_k)^{\top} S_k g_k(\mathcal{X}_k)}$$

- Inference with sum-product algorithm
 - Messages from factor to variables:

$$h_{f_{j} \to x_{i}} = h_{j} - \sum_{k \in \mathcal{K}_{j} \setminus i} J_{j}^{jk} (J_{x_{k} \to f_{j}} + J_{j}^{kk})^{-1} (h_{x_{k} \to f_{j}} + h_{j}^{k})$$
$$J_{f_{j} \to x_{i}} = J_{j} - \sum_{k \in \mathcal{K}_{j} \setminus i} J_{j}^{jk} (J_{x_{k} \to f_{j}} + J_{j}^{kk})^{-1} J_{j}^{kj},$$

$$J_m = F_m^{\top} R_m^{-1} F_m$$
$$h_m = F_m^{\top} R_m^{-1} (y_m - f_m(\overline{\mathcal{X}}_m))$$

$$J_k = G_k^{\top} S_k^{-1} G_k$$
$$h_k = G_k^{\top} S_k^{-1} (\mathcal{X}_k - g_k(\overline{\mathcal{X}}_k))$$

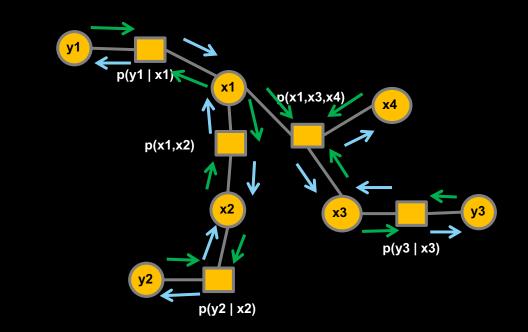
Messages from variable to factors:

$$h_{x_i \to f_j} = \sum_{k \in \mathcal{K}_i \setminus j} h_{f_k \to x_i}$$

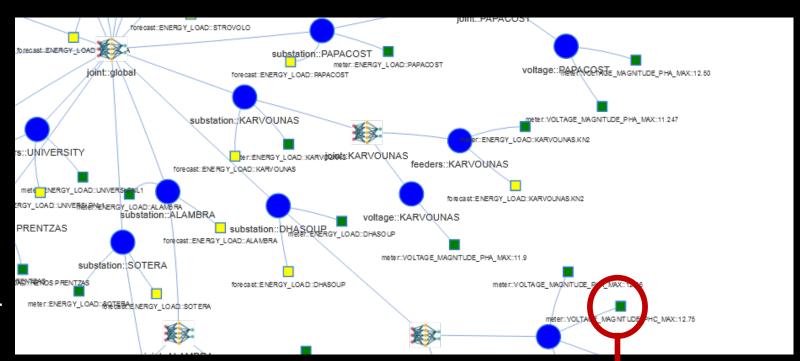
$$J_{x_i \to f_j} = \sum_{k \in \mathcal{K}_i \setminus j} J_{f_k \to x_i},$$

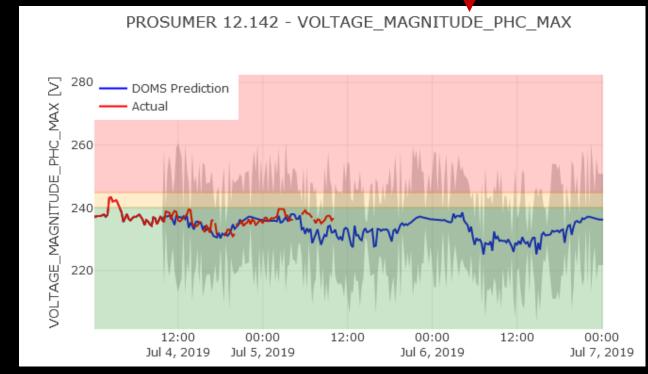
– Update variables:

$$\delta x_i = \left(\sum_{k \in \mathcal{K}_i} J_{f_k \to x_i}\right)^{-1} \left(\sum_{k \in \mathcal{K}_i} h_{f_k \to x_i}\right)$$



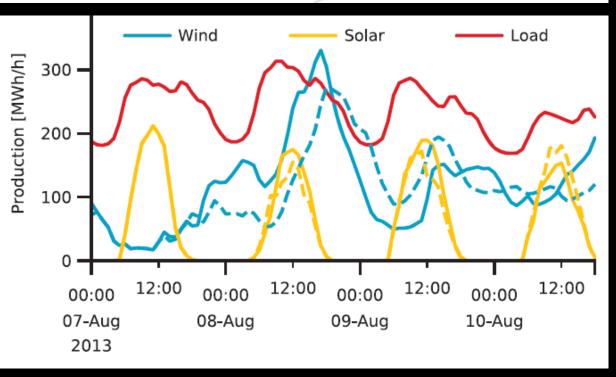
- GoFlex Demonstration site in Cyprus
 - Grid model of 15 substations, 29 feeders,
 41 prosumers (voltage)
 - Graphical model composed of 16 NLPCA neural network models (1 x substation + 1 global)
 - Receive energy forecasts of substation / feeder loads and distributed renewable generation
 - Estimate voltage at prosumers
- If voltages outside bounds, simulate the graphical models to estimate energy variation required for desired profile





Application to European transmission grid

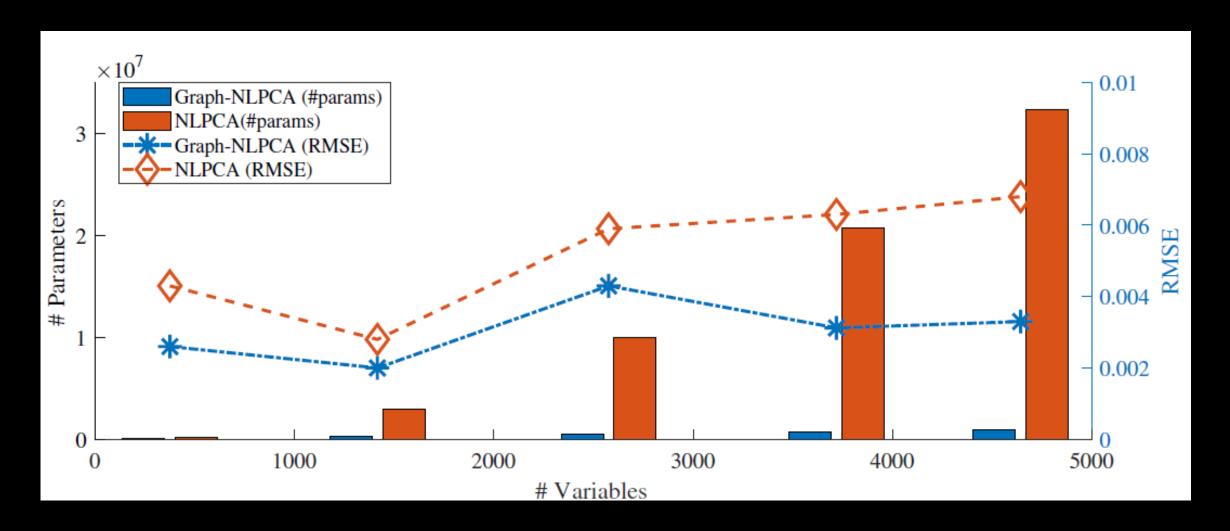
- Re-Europe (*)
 - 1354-nodes Europe transmission grid
 - Hourly timeseries of electrical demand, wind and solar generation
- Simulate power flow (Matpower):
 - Generate timeseries of voltage and active
 / reactive power
 - Add Gaussian noise with st. dev. : 10⁻³ MW (power), 10⁻⁵ p.u. (voltage)
- Total 8124 timeseries (1354 x 6) variables



(*) Jensen, T.V., Pinson, P.: Re-europe and a large-scale dataset for modeling a highly renewable european electricity system. Scientic Data 4:170175 (2017)

Application to European transmission grid

 Centralised NLPCA model deteriorates as dimensionality increases with limited training data



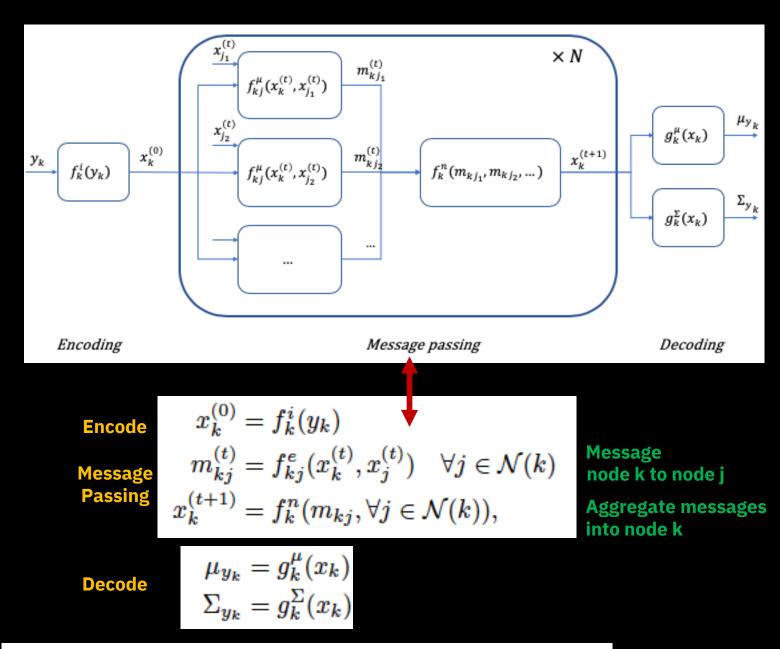
AI-based grid modelling based on Probabilistic GraphsGraph Neural Networks

- Limitations of proposed graphical model
 - Derivation of principled belief propagation is not trivial for non-linear, loopy graphs
 - Belief propagation message-passing algorithms are not fully parallelizable and iterative in nature

Use <u>Graph Neural Networks</u>

- Message-passing as feedforward neural network
- Learn belief propagation from the data with standard gradient-based algorithms
- Inference is a feedforward pass

Fusco, F. and Eck, B. and Gormally, R. and Purcell, M. and Tirupathi, S. "Knowledgeand Data-driven Services for Energy Systems using Graph Neural Networks". IEEE Conference on Big Data 2020.

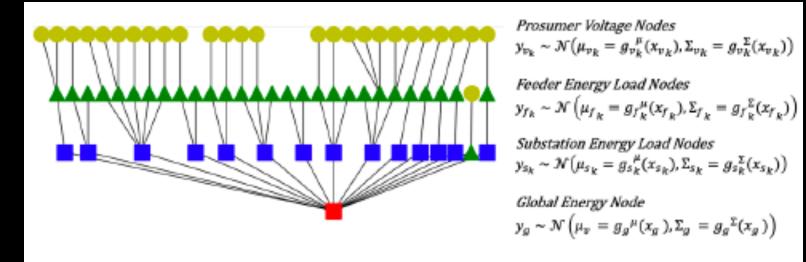


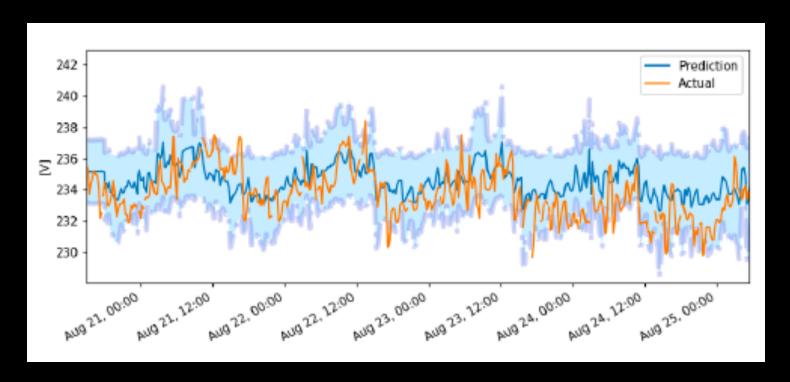
$$\mathcal{L} \propto \sum_{t=1}^{T} \sum_{k=1}^{N} \frac{1}{2} \log |\Sigma_{y_k}^t| + \frac{1}{2} (y_k^t - \mu_{y_k}^t)^{\top} \Sigma_{y_k}^{t^{-1}} (y_k^t - \mu_{y_k}^t)$$

AI-based grid modelling based on Probabilistic GraphsGraph Neural Networks

- GoFlex Demonstration site in Cyprus
 - Grid model of 15 substations, 29 feeders, 41 prosumers (voltage)
 - Graphical model composed of 16
 NLPCA neural network models (1 x substation + 1 global)
 - Voltage prediction problem (solved as data imputation)

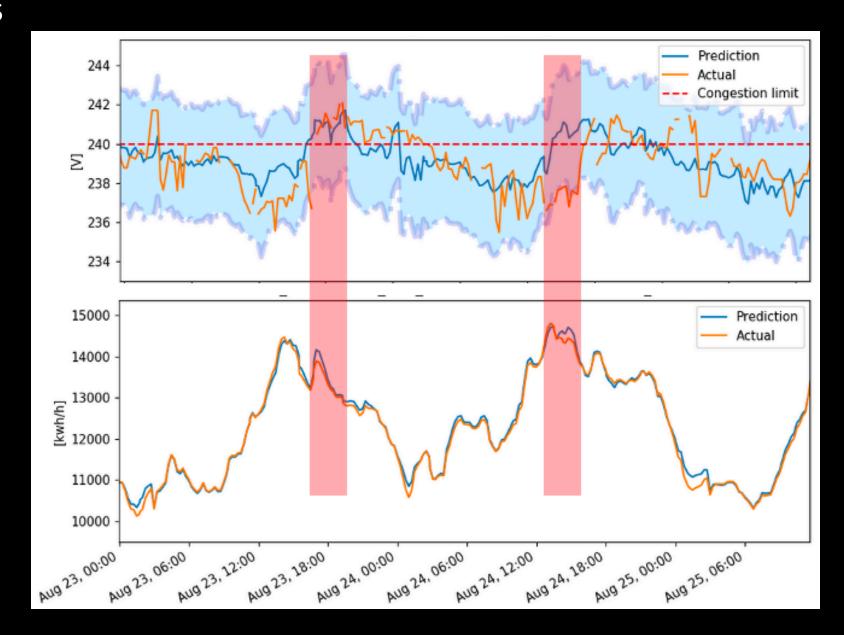
Model	# Layers	# MP	# Params	MAPE	RMSE
GNN	2	5	143,464	0.81%	2.42
GNN	3	5	169,144	0.82%	2.45
GNN	2	8	142,832	0.80%	2.40
GNN	3	8	169, 144	0.81%	2.41
MLP	2	_	1,271,440	0.80%	2.40
MLP	3	_	2,118,760	0.73%	2.21
AE	2	_	2,407,088	0.72%	2.17
AE	3	_	3,796,840	0.70%	2.13





AI-based grid modelling based on Probabilistic GraphsGraph Neural Networks

- GoFlex Demonstration site in Cyprus
 - Example of using AI grid model to generate flexibility bids to avoid congestion



Thank you, Questions?

References

- Fusco, F. and Eck, B. and Gormally, R. and Purcell, M. and Tirupathi, S.
 "Knowledge- and Data-driven Services for Energy Systems using Graph Neural Networks". IEEE Conference on Big Data 2020.
- Eck, B. and Fusco, F. and Gormally, G. and Purcell, M. and Tirupathi, S. "Scalable Deployment of AI Time-series Models for IoT". AI4IoT Workshop at IJCAI 2019
- Eck, B. and Fusco, F. and Gormally, G. and Purcell, M. and Tirupathi, S. "AI
 Modelling and Time-series Forecasting Systems for Trading Energy Flexibility in
 Distribution Grids". ACM e-Energy 2019
- Fusco, F. "Probabilistic Graphs for Sensor Data-Driven Modelling of Power Systems at Scale". Data Analytics for Renewable Energy Integration Workshop at the European Conference on Machine Learning (ECML) 2018
- Fusco, F. and Gormally, R. and Tirupathi, S. "Power systems data fusion based on belief propagation". IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) 2017

francfus@ie.ibm.com

