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= Develop solutions to enable an energy
flexibility market A g

— Distribution grid operator (DSO) buys
flexibility to solve for local grid congestions

- Accommodate larger shares of distributed
(renewable) energy generation A

» 3 demonstration sites at DSOs in Cyprus,
Switzerland, Germany

https://www.goflex-project.eu/
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The GoFlex project /ﬂ’\ GOFLEX

/ Electrical System
Operator

= Scalable energy forecasting platform

_ —_—— Buy — ——
Collect IoT sensor data Congeation ‘ ot e N o
- Run time-series forecasting models of  bidding il

distributed consumption and generation

- ,'lj

predictions

| Machine-learning services

W’

= Al-based grid modelling ‘ Erid Model | \ ey
1. Predict grid issues N ——
- Inputis energy forecasts
- Estimate impact on the grid (load, voltages)
- Compare with user-defined tolerance
2. Predict required flexibility
- Input is desired profile (load, voltages) DOMANKIOMEIE s o e

- Estimate amount of energy flexibility Leverage IoT data semantics:

(increase/decrease) to follow profile « Scaling and Automating time-series forecasting models
« Incorporate domain knowledge in AI Modelling

Energy flexibility market

Knowledge-based Store

Concepts and relations Time Series
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Scalable time-series forecasting platform

= GoFlex use-case

- Collect IoT data from prosumers, SCADA
(1000+ points every 15 min)

- https://github.com/GoFlexH2020/samples PGENGTISE —_yosna

signal

time series

Substation S1 __+— feeder

- Live energy forecasts

— Distributed energy consumption and
generation (solar, wind) at 200+ points

- Refresh hourly for 24-hour windows at 15-
minute time resolution

— Continuous trial operation from Jan 2019 to
March 2020

Instantaneous [# Readings]

Cumulative [# Million Readings]

Jan 29 Feb 12 Feb 26 Mar 12 Mar 26
2019
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IBM Research Castor:
Scalable time-series forecasting platform

Model Implementation B % ::*L’sl“‘[ Ir:"llg:r'ﬁ
N s / class TheModel(): | ,»”I, J N Trained Model
. def load(self): ;"'::"’; ' I Forecast
= JoT and semantic data management, e tansform(sel): i
deployment of Al time-series models on the def train(sell):

C |.O u d def score(self):

= Built-in parallelization and potentially
Infinite horizontal scalability [

1
5 “package™ "Pypl”,
“entity”: “METER1”,

= Programmatic deployment of Al models sanar” L0AD" |G
based On Semantlcs for mOdel' reuse and Model Deployment _I"ufln:-del ..I-';I-'I-:;;agernen;;ewices Til'l‘:;;EI’iES Se_r;-i;es
automation

Figure 1: IBM Research Castor Overview and Modelling Flow

= Full lineage of timeseries data, model Built on the IBM Cloud
forecasts, model (re-trained) versions.

Live time-series data ingestion Deploy Al models
= Transparent, customizable modelling Application semantics Automatic execution
ecosystem, supporting Python /R of model train/score jobs

Automatic persistence
trained model versions, time-
. . . 6

series predictions

Develop / customize AI models
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IBM Research Castor: Tisting | Model Implementation Pseudocode |
Scalable time-series forecasting platform o

= Separation between implementation and
model

- Implement modelling steps (feature
engineering, model selection, etc.) based on
abstract (“solar generation”,
“substation load”, ...)

- Specify semantic context instance In
deployment configuration

= Implement one model, deploy many distoname’: <
(automate) “raning.doy

“scoring_deploy :
“time™: "2019-03-01T00:00:00+00:007,
“repeatEvery”: "1_hours™ },

“frequency™: 15T,
“train_time™: {"2018-01-017, 7"2019-01-01"} },
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IBM Research Castor:
Scalable time-series forecasting platform

= The GoFlex use
- Approx. 250 models running live every 15 min

# Sensors # Models Execution [s]
Germany 18

Switzerland 196

Cyprus 531

Table 2: Size and performance in deployed systems. Model execu-
tion refers to the average duration of a scoring job.

= Scalability tests

- Upto 27K jobs / hour at no performance

: Parallel Jobs # Jobs/hour Job Duration [s]
degradation B e

50 18,900 9.5

100 22,300 16.1

150 26,900 20.1

175 27,600 22.8

200 26,700 27.0

Table 3: System scalability analysis.

Eck, B. and Fusco, F. and Gormally, G. and Purcell, M. and Tirupathi, S. “Scalable
Deployment of AI Time-series Models for IoT”. AI41oT Workshop at IJCAI 2019
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Logical View of Entities

IBM Research Castor: oums souee: B3
Scalable time-series forecasting platform

GRID_INJECTION

= Example of solar forecasting models

loT Data Ingestion View Timeseries by ID Overview Model Management MAPE Calculator Forecast Exploration

Entity

DUMAS-SOLAIRE.187

Select models to compare - only trained models are shown

observed solar_gam_model_v1 characteristic-profile-2 charprofile-JDH-0.6.2-1 charprofileSVR-JDH-0.6.2-1 charprofileSVR-JDH-0.6.2-28days charprofile ##7.2-1 charprofileLR-0.7.2-1 charprofileSVR-0.7.2-1

Model Hierarchy for Selected Entity & Signal Model Comparison for Selected Entity & Signal

DUMAS-SOLAIRE.187
— observed — charprofileSVR-0.7.2-1

0.08

0.07

[MWh/h]

charprofile-JDH-0.6.2-1
charprofileSVR-JDH-0.6.2-28days

0.06
charprofileSVR-JDH-0.6.2-1

charprofile-0.7.2-1

0.05

signal

charprofileLR-JDH-0.6.3-1

0.04
RAW_ENERGY GENERATION SIS, SOLAIRE 187

charprofileSVR-0.7.2-1

0.03

charprofile-JDH-0.7.2-1

0.02

charprofileLR-0.7.2-1 solar_gam_model_v1

characteristic-profile-2

0.01

RAW_ENERGY_GENERATION_SOLAR

model_versiol

0
24 Sep 25 Sep 26 Sep 27 Sep 28 Sep 29 Sep 30 Sep 01 Oct 02 Oct 03 Oct 04 Oct

u )
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Logical View of Entities

IBM Research Castor: e B

Scalable time-series forecasting platform

SCHALTHAUS:EON1+2

SULZENLOHE.SEG1

SCHALTHAUS

= Example of wind forecasting models (ensembles) CW;/

SCHALTHAUS.EON1 syww.BIOMASS
O
O
loT Data Ingestion View Timeseries by ID Overview Model Management MAPE Calculator Forecast Exploration \\/‘
NEUSORG
Entity

SWW.WIND BIOMASS_PLANT

NEUSORG.EON

Select models to compare - only trained models are shown

observed Transform_Raw_Wind_Generation BaselineWindModel_v1 BaselineWindModel_v2 BaselineWindModel_v3 wind_model_spline wind_model_ann_windspeed_solar wind_model_tensor wind_model_ensemble_sa
wind_model_ensemble_ols wind_model_ensemble_lad wind_model_ensemble_cls ensemble_mlp ensemble_irmse

Model Hierarchy for Selected Entity & Signal Model Comparison for Selected Entity & Signal

SWW.WIND

— observed —
wind_model_ensemble_lad

ensemble_irmse

wind_modeltensor
wind/model_spline,

[kWh/h]

BaselineWindModel_v1
Transform_Raw_Wind_Generation

signal

wind_model_ensemble_sa

ensemble_mip
ENERGY_GENERATION_WIND.

wind_model_ensemble_cls

SWWWIND BaselineWindModel_v3

BaselineWindModel_v2

Wind_model_ensemble_lad

N

Lv\s, ,#‘ ‘

wind_modg|_ensemble_ol
WG Model_ann_indspeed_solar

ENERGY_GENERATION_WIND

model_versiol | | | | | | | | | |
23 Sep 24 Sep 25 Sep 27 Sep 28 Sep 29 Sep 30 Sep 01 Oct 02 Oct 03 Oct

) )
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?
The GoFlex project Z?? GO

[ Electrical System
Operator

= Scalable energy forecasting platform

— Collect IoT sensor data
- Run time-series forecasting models of  predictions bidding

distributed consumption and generation $

Machine-learning services

;/AI-based orid modelling \ ‘ Grid Model | ‘ ~ Energy |
- Input is energy forecasts  Knowledge-based Store
Concepts and relations Time Series
- Estimate impact on the grid (load, voltages) ]

— Compare with user-defined tolerance

2. Predict required flexibility
- . . i loT Weath
- Inputis desired profile (load, voltages) o e aes™  Sensors  data seruices

Buy . Sell
Flexibility flexibility

‘/ Congestion ‘ Market

Energy flexibility market

- Estimate amount of energy flexibility o
(increase/decrease) to follow profile Leverage IoT data semantics.
« Scaling and Automating time-series forecasting models

« Incorporate domain knowledge in AI Modelling
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Al-based grid modelling

= GoFlex use-case

- Predict impact of distributed energy generation
on grid assets (e.g. voltage, line loading)

- Estimate required flexibility for desired asset
behavior (e.g. voltage profile) MBS — e

signal

time series

Substation S1 __+— feeder

ENERGY_LOAD

= Limitations of power-flow models
- Require detailed, accurate physical parameter
- Difficult to maintain under changing grid

» Al-based modelling
- Leverage sensor data
- Don’tignore available knowledge, however

Instantaneous [# Readings]

Cumulative [# Million Readings]

. .. . 5 1‘11:119 FbZ ””‘2 | Mml:2” «;11‘:2‘6
incomplete (connectivity, physics) 2019

© 2019 IBM Corporation 12




AlI-based grid modelling based on Probabilistic Graphs

NLPCA: AL = hy (27, ) + i

= (Gaussian) Probabilistic Graphs (*)

— Embed domain knowledge (factorization)
— Flexibility: extend as needed, grow with the data

— Modularity: model different subsets of variables as dditional -
desired (e.g. combine physics-based models and byl e generaon
ML models)

— Scalability: Sparse model

— Naturally handle missing data: Use the same
model for prediction or simulation problem

Z

Factor graph representation

p(y1|x1)

p(x1,x3,x4)

p(x1,x2)

p(y3 | x3)

p(y2 | x2) y = Ax + ¢

(*) Fusco, F. Probabilistic Graphs for Sensor Data-Driven Modelling of Power Systems at Scale. Data Analytics for
Renewable Energy Integration Workshop at the European Conference on Machine Learning (ECML) 2018

© 2018 International Business Machines Corporation (K]



AlI-based grid modelling based on Probabilistic Graphs

M K
. . f .-'.' :"l ‘ ) N H e - _l [F_J'r:-- _.Irr:-- ! "F:"I -] I R | :.'_-'". —f”; ! ~'1|-!r:-- ]-. H e - T'I' gk .-'l'";,. ) - "" g ~'1|-:.|.' )
= Gaussian assumption: . ,

» [nference with sum-product algorithm
— Messages from factor to variables:

k=1

p(y1 | x1)
o(x1,x3,x4)

p(x1,x2)

p(y3 | x3)

p(y2 | x2)

© 2018 International Business Machines Corporation 14



AlI-based grid modelling based on Probabilistic Graphs

subst‘-ﬂtlon::P.A,PACOST o
meter ENERGY_LOAD PAPACOST

* GoFlexDemonstration site in Cyprus S S

. KARVOUNAS
- Grid model of 15 substations, 29 feeders, HE_—- e ®
41 prosumers (voltage) -

- Graphical model composed of 16 NLPCA | el NN
neural network models (1 x substation + 1 |-
global)

- Receive energy forecasts of substation / PROSUMER 12.142 - VOLTAGE_MAGNITUDE_PHC_MAX
feeder loads and distributed renewable

generation
- Estimate voltage at prosumers

feeders:: KARVOUNAS

280 . poms Prediction

Actual

[V]

= Ifvoltages outside bounds, simulate the
graphical models to estimate energy variation
required for desired profile

VOLTAGE_MAGNITUDE_PHC_MAX

12:00 12:00 12:00

Jul 4,2019  Jul 5, 2019 Jul 6, 2019
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AlI-based grid modelling based on Probabilistic Gra
Application to European transmission grid

» Re-Europe (*¥)
— 1354-nodes Europe transmission grid

— Hourly timeseries of electrical demand,
wind and solar generation

» Simulate power flow (Matpower):

— Generate timeseries of voltage and active
| reactive power

— Add Gaussian noise with st. dev. :
10-3 MW (power), 10 p.u. (voltage)

Production [MWh/h]

L) PR

| A /
\ i < .
\ |7 - A

» Total 8124 timeseries (1354 x 6) variables °

00:00 1200 o000 1200 gp:00 1200 p0:00 12:00

07-Aug 08-Aug 09-Aug 10-Aug
2013

(*) Jensen, T.V., Pinson, P.: Re-europe and a large-scale dataset for modeling a highly

© 2018 International Business Machines Corporation f'enewable european e/eCtrICIty SyStem. SCIentIC Data 4:1701 75 (201 7) 16



AlI-based grid modelling based on Probabilistic Graphs
Application to European transmission grid

» Centralised NLPCA model deteriorates as dimensionality increases with limited
training data

I Graph-NLPCA (#params) V.01
[ NLPCA (#params)

= Graph-NLPCA (RMSE) 0 008
—~{=>-NLPCA (RMSE)

0.006 ...

0.004

o
I
L
s
]
=
-
—
'l
—_—
—
]
-
]

0.002

0
1000 2000 3000 4000 5000
# Variables
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AlI-based grid modelling based on Probabilistic Graphs
Graph Neural Networks

= Limitations of proposed graphical model

— Derivation of principled belief propagation
Is not trivial for non-linear, loopy graphs

— Belief propagation message-passing
algorithms are not fully parallelizable and
iterative in nature

Encoding Message passing Decoding

= Use Graph Neural Networks
— Message-passing as feedforward neural T %) = fi(u)

network | | | WO ) = fi(z),2") VieN(k)
— Learn belief propagation from the data with Passing ISNCESVIS 1 (mes Vi € N (k)
standard gradient-based algorithms kR =)

— Inference is a feedforward pass

Decode

Fusco, F. and Eck, B. and Gormally, R. and Purcell, M. and Tirupathi, S. “Knowledge-
and Data-driven Services for Energy Systems using Graph Neural Networks”. IEEE
Conference on Big Data 2020.

© 2018 International Business Machines Corporation N = 18




AlI-based grid modelling based on Probabilistic Graphs
Graph Neural Networks

» GoFlex Demonstration site in Cyprus

- Grid model of 15 substations, 29
feeders, 41 prosumers (voltage)

— Graphical model composed of 16
NLPCA neural network models (1 x

substation + 1 global)

- Voltage prediction problem (solved as
data imputation)

Model || # Layers # MP # Params MAPE RMSE
‘ 143,464 0.81%
169,144 0.82%
142,832 0.80%

169,144 | 0.81%
1,271,440 | 0.80%
2,118,760 | 0.73%
2,407,088 | 0.72%
3,796,840 | 0.70%

© 2018 International Business Machines Corporation
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AlI-based grid modelling based on Probabilistic Graphs
Graph Neural Networks

» GoFlex Demonstration site in Cyprus
- Example of using AI grid model to ‘ — Preciction

Actual

generate flexibility bids to avoid - y - Congestion limit
congestion “

- Prediction

Actual

© 2018 International Business Machines Corporation 20



Thank you, Questions ?

= References

francfus@ie.ibm.com
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