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ARTICLE INFO ABSTRACT
Keywords: Demand side energy flexibility is increasingly being viewed as an essential enabler for the swift transition to a
Energy flexibility low-carbon energy system that displaces conventional fossil fuels with renewable energy sources while main-

Energy flexible buildings
Energy system resilience
Energy stakeholders
Business models

Energy policy

taining, if not improving, the operation of the energy system. Building energy flexibility may address several
challenges facing energy systems and electricity consumers as society transitions to a low-carbon energy system
characterized by distributed and intermittent energy resources. For example, by changing the timing and amount
of building energy consumption through advanced building technologies, electricity demand and supply balance
can be improved to enable greater integration of variable renewable energy. Although the benefits of utilizing
energy flexibility from the built environment are generally recognized, solutions that reflect diversity in building
stocks, customer behavior, and market rules and regulations need to be developed for successful implementation.
In this paper, we pose and answer ten questions covering technological, social, commercial, and regulatory
aspects to enable the utilization of energy flexibility of buildings in practice. In particular, we provide a critical
overview of techniques and methods for quantifying and harnessing energy flexibility. We discuss the concepts of
resilience and multi-carrier energy systems and their relation to energy flexibility. We argue the importance of
balancing stakeholder engagement and technology deployment. Finally, we highlight the crucial roles of stan-
dardization, regulation, and policy in advancing the deployment of energy flexible buildings.

1. Introduction increase the integration of renewable energy sources (RES) and achieve
low-carbon energy systems, the intelligence for keeping the balance

Historically, the operation of the electric power and energy system between energy supply and demand must include the demand side (e.g.,
has relied on large centralized power plants, where centralized decision in buildings). This is because future low-carbon energy systems based on
and control systems are deployed to commit and dispatch conventional wind and solar are weather-driven and largely inflexible (i.e., the power
and typically fossil-fuel, generation resources. However, in order to production is dependent on weather conditions). The management of a
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weather-driven energy system, therefore, is decentralized and imple-
mented across both the supply- and demand-side, including a plethora of
residential and commercial building stocks.

To ensure a continuous balance with the instantaneous and
increasingly variable energy production, energy flexibility in buildings
is an attractive but underemployed resource to modify energy demand.
Energy flexibility is defined by the International Energy Agency (IEA) as
“the ability for a building to manage its demand and generation ac-
cording to local climate conditions, user needs, and grid requirements”
[1] and is characterized by changing the magnitude and timing of
building energy use in response to system costs, emissions, and/or
operational requirements. From the work in IEA-EBC Annex 67 and 82
[1], it became clear that energy flexibility of buildings must be har-
nessed across a cluster of buildings or at a district scale to provide an
aggregated amount that is sufficiently impactful for the operation en-
ergy grids. This paper, therefore, does not focus on single buildings, but
discusses all questions on a building cluster level.

Compared with the more established term demand side management
(DSM), energy flexibility is a building-centric term describing the
capability of buildings to respond to the needs of energy grids, including
power grids and other types of networks (e.g., district heating [2,3]) and
is inclusive of DSM. Energy flexibility is an emerging field of research
based on knowledge and analysis of building physics and energy systems
to study capabilities with real-world fidelity, including building thermal
dynamics, service systems and appliances, occupant influences, and
weather impacts, with different temporal considerations for different
types of grid services. Energy flexibility (also called demand flexibility in
some publications) is often considered within a broader DSM context,
where DSM strategies can be broadly categorized as energy efficiency,
demand response (DR), and energy flexibility measures [4,5]. Energy
efficiency measures are characterized by reductions in energy con-
sumption with respect to a reference system or baseline. These can be
achieved either through improved building envelope or energy con-
version systems, enhanced control algorithms, or building system opti-
mization measures [4]. DR that curtails building electrical demand
during times of grid stress can be viewed as a specific strategy for har-
nessing energy flexibility in buildings (or other end-use categories)
without the need for significant capital investment, which can offer
flexibility to the power grid [6]. Energy flexibility, in turn, is charac-
terized by the shifting of energy demand profiles to satisfy grid and local
objectives, including energy availability, cost management, and carbon
reduction, and is typically executed in a planned and optimized manner
[7]. Within the building energy sector, energy flexibility measures can
include the incorporation of on-site renewable energy options, such as
solar electric or solar thermal systems, to offset central energy supply
systems. Other measures include the re-scheduling of heating, ventila-
tion, and air conditioning (HVAC) systems [8,9], utilization of active
energy storage systems [10], exploiting passive building thermal mass
[11,12], harnessing appliances, or shifting occupant demand by influ-
encing associated behavior [6]. Lastly, modern HVAC systems that
operate along a continuous capacity scale such as variable refrigerant
flow, variable air flow, and variable-speed vapor compression systems
offer part-load performance characteristics that can be favorably
exploited to offer energy flexibility [13].

Despite the potential benefits of energy flexibility to energy systems
and energy providers, a number of technological and policy de-
velopments are needed for widespread deployment. For example, new
methods and approaches for quantifying and harnessing energy flexi-
bility, and increasing end-user acceptance and engagement; business
models that enable sharing the benefits among stakeholders; and pol-
icies and regulations that encourage new business development and
reduce investment and operational costs of demand side management.
The aim of this paper is to discuss some of the challenges for enabling
energy flexibility services that individual buildings and clusters of
buildings can deliver to different types of energy networks, including
technological approaches, stakeholder involvement, business models,
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and regulations and policies.
2. Ten questions

2.1. Q1. How can building energy flexibility contribute to a low-carbon
future energy system?

Energy flexibility has the potential to be a cost-effective solution
which enhances and strengthens the operation of the energy system,
while integrating a larger share of renewables. From this perspective,
the existing thermal energy infrastructure within buildings and associ-
ated energy supply networks represent a considerable asset for flexi-
bility [16,17]. Recent advancements in smart sensing and metering,
smart appliances, electric vehicles, and energy storage technologies
facilitate energy flexibility in buildings and can help energy supply
systems improve operational management by optimizing flexible loads
[18]. At the single building level, the increasing use of smart sensing and
metering, smart appliances, electric vehicles, and energy storage tech-
nologies, all enhance the energy flexibility offered by buildings and can
help energy systems improve operations [4,17]. At a building cluster
level, inter-building cooperative energy flexibility measures have the
potential to provide greater degrees of energy flexibility within a single
localized operational framework [19-21].

The deployment of energy flexibility can yield significant economic
and environmental gains. The European Commission developed the
Smart Readiness Indicator (SRI) to promote smart buildings with the
capability of providing energy flexibility and estimated that mandatory
implementation of the SRI by linking it to the energy performance cer-
tificate (EPC) could reduce final energy consumption up to 198 TWh by
2050 and avoid 32 million tonnes of GHG emissions per year [22].
Similarly, Satchwell et al. found $100-$200 billion in US power system
cost savings and a 6% reduction in US power sector emissions from
efficient and flexible residential and commercial buildings by 2030 [23].

As peak-load generators are commonly fossil-fuel units, environ-
mental gains appear with peak-load shedding that positively impacts
GHG emissions cuts. Although a systematic quantitative analysis on
building stocks still needs to be conducted, a few relevant studies can
provide some insights into this benefit. Stentoft et al. [25] found that
flexible management of a wastewater aeration system using a control
strategy based on electricity production GHG emissions data resulted in
14-43% lower emissions than the other control strategies. Larger
inter-diurnal differences in GHG-emissions generally led to larger sav-
ings. This suggests that the current potential might increase in a future
energy context with more fluctuating energy sources [25]. A study of
meat factories in Spain suggested up to 3% and 5% of CO2 emission
reductions by participating in balancing markets and secondary regu-
lation, respectively [26]. In addition, energy flexibility can provide
additional solutions to counterbalance the shortfall in generation due to
the expected phase-out of fossil fuel or nuclear power plants [27].

Customers are also expected to benefit from energy flexibility. For
example, the TABEDE project modeled a district consisting of 66 resi-
dential buildings with seven archetypes including apartment buildings
and terraced houses in Cardiff, UK, and estimated up to 30% in energy
cost savings and up to a 25% increase in the penetration of distributed
RES [24]. A study of a community with 498 all-electric homes showed
that with the increase in energy flexibility by using home energy man-
agement systems (HEMS) and batteries, homeowners can reduce their
electricity cost by $590/year [4]. The full benefits to individual
households are difficult to quantify, however, as there are also qualita-
tive factors such as the empowerment of controlling one’s own energy
use and the awareness of contributing to a greener society. Still, with
recent and substantial increases in energy prices worldwide, the eco-
nomic benefits to some individual households may become a decisive
factor to participate in energy flexibility programs.

Despite the fast advancement of technologies to deploy energy
flexibility (e.g., see details in Q2-Q5), social, economic, and policy
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developments are necessary to remove barriers and constraints (e.g., see
details in Q6-Q10) to increase the impacts and role for energy flexibility
in a low-carbon future. Furthermore, residential user engagement is
typically a complex process involving several issues that are generally
specific to each end-user. These issues include financial motivation, fa-
miliarity and trust, perceived risk and control, complexity and effort,
interaction with routines and programs, and user characteristics [28].

2.2. Q2. How can energy flexibility be quantified?

Existing literature shows that most quantification methodologies
focus on the building sector [18]. This observation may reflect the
relatively high contribution of the sector to energy consumption (e.g.,
the building sector accounts for 40% of total primary energy con-
sumption in the U.S. and E.U [29]) and the opportunities arising from
the possibility of controlling the operation of specific systems without
decreasing the quality of the provided services and within acceptable
user comfort levels. Li et al., in a wide-ranging review, concluded that
resources and technologies providing energy flexibility could be orga-
nized according to four main categories, namely: i) thermostatically
controlled loads; ii) electrical or thermal energy storage devices; iii)
electrical appliances; and iv) multi-energy consumption devices [18],
which, unlike the previous categories, do not provide energy flexibility
by modification of their demand profile, but instead switch between
energy carriers during flexibility events.

Despite the types of exploitable resources and technologies, energy
flexibility is often quantified according to two distinct approaches. In the
first, existing flexibility can be quantified by key performance indicators
(KPIs) describing its impact on different performance metrics, such as
peak to average ratio [30] or electricity costs [31]. Simulation or mea-
surement campaigns used to obtain the baseline scenario, which are
needed to compute the referred KPIs, must therefore respect the same
constraints (e.g., users’ comfort needs) considered during the utilization
of the available energy flexibility. In the second approach, energy flex-
ibility is directly quantified by metrics related to the modifications
imposed to the demand profile, such as the power demand increase or
decrease that can be sustained over a specific period of time [32] or a
combination of several metrics as described by the Flexibility Function
developed in IEA-EBC Annex 67 [15]. The Flexibility Function quantifies
the response of the controlled system to a specific incentive variation (e.
g., electricity price) and is suited for data-driven applications where only
the incentive signals and the energy consumption profiles are available
(e.g., as shown in Ref. [33]). Additionally [15], proposed a Flexibility
Index, which assesses the benefits of using energy flexibility given a
specific incentive signal that could come from the grid to motivate a
response. This index belongs to the first type of approaches and provides
a single number that can be used to guide how to optimally design the
buildings for a particular area and climatic zone.

The Energy Performance of Buildings Directive (EPBD) [34] requires
the development of a rating system for the smart readiness of buildings,
termed the Smart Readiness Indicator (SRI) [22]. The SRI allows the
rating of the smart readiness of buildings to be quantified, and leads, for
example, to a rating of the capability of a building to adapt its operation
in response to signals from the grid, which can be used as an additional
possibility to characterize existing energy flexibility. However, energy
flexibility is a dynamic phenomenon and therefore the SRI will only
provide an indication of the approximate potential to react to the
referred signals. Additionally, the SRI is only applicable to buildings
while other methodologies, such as the Flexibility Function [15], can be
used for all flexible assets including water towers [32], and wastewater
treatment plants [25].

Since energy flexibility is not an invariant intrinsic parameter of
buildings (e.g., energy flexibility varies at different times limited by the
available controllable devices at the time) and its use depends on spe-
cific objectives to be achieved, quantification methodologies should
allow real-time updates according to any performance metric of interest,
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including different user comfort needs. Therefore, when applying an
energy flexibility quantification methodology to a specific case study,
one must take into consideration the respective needs and limitations
and, if possible, test several candidates (e.g., Reynders et al. assessed
several methodologies using a common case study [35]).

This underscores the need for a generic energy flexibility charac-
terization methodology, which should be simple to apply and useable by
different stakeholders, where adequate interoperability among different
decision-making levels is instrumental for the effective use of the char-
acterized energy flexibility. Potential user comfort impacts and other
aspects related with the quality of the service provided by the flexible
systems should also be taken into consideration. A possible solution is to
use a hierarchy of controllers that we discuss in more detail in Q3.
Additionally, given that metering and sensor technologies that allow
real-time data collection are becoming increasingly available, it is
evident that larger efforts should be allocated to the development of
data-driven characterization methodologies. In this context, IEA-EBC
Annex 82 will continue the development of the data-driven Flexibility
Function developed in IEA-EBC Annex 67 with the main objective of
extending its application to an aggregated level, while facilitating its
application by different stakeholders.

2.3. Q3. How can energy flexibility be harnessed?

Unlocking energy flexibility consists of connecting flexibility pro-
viders (e.g., a cluster of buildings) to a utility operator or an aggregator
in need of flexibility with the objective of altering energy demand.
Multiple control architectures and DR programs have been studied, with
advantages and disadvantages in terms of reliability, scalability and
implementation cost. Control architectures are classified either as
centralized, decentralized or distributed systems (see Fig. 1) depending
on decision-making roles (e.g., utility, aggregator or end-users) and
whether end-users share information with other stakeholders [36].

In centralized architectures, a single entity communicates and
directly controls the flexible devices (see Fig. 1-a). The main advantage
of centralized approach is a control close to optimal as the entire system
is under the supervision of a single entity [37,38]. However, there are
some scalability and computational issues especially when controlling a
large number of assets [36].

In decentralized architectures, end-users share only selected infor-
mation (e.g., power consumption profile) and the management strategy
is decided locally. The simplest form of decentralized architecture
consists of broadcasting either a price signal to end-users [35,39] or by
issuing an optimal load shaping signal that buildings actively track as
closely as possible by locally shaping device control strategies [19-21]
(see Fig. 1-b). In price-based DR-programs, customers are encouraged to
participate in a time-varying pricing scheme and their reward depends
on the flexibility offered [40-42]. This type of architecture is suitable for
scaling to building clusters, but may not lead to optimal control over the
entire asset [43].

To improve cooperation or enhance competition, two types of
distributed approaches exist: hierarchical and non-hierarchical (see
Fig. 1-c and 1-d). The global control strategy is divided into various
subtasks in the hierarchical architecture, whereas a direct communica-
tion between end-users enhances interaction in the non-hierarchical
architecture. An increased research trend for both types of architec-
ture has been recently observed [36]. An example of hierarchical ar-
chitecture is proposed by Ref. [44], with a combination of high-level
markets with a hierarchy of controllers. To address coordination at
scale in non-hierarchical architectures, various methods have been
developed from classical optimization techniques to multi-agent systems
[36,38]. Classical optimization methods include techniques such as
stochastic optimization and mixed integer linear programming, but are
limited at scale. Multi-agent systems include mathematical and heuristic
methods that can be further divided into game-theory based and
reinforcement-learning based [45,46]. In these different optimization
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Fig. 1. Control architectures for cluster of buildings.

algorithms, the major challenge is the accurate evaluation of un-
certainties from occupants and buildings [43].

At the building level, in case of decentralized or distributed archi-
tecture, a local controller is necessary to define a set-point temperature,
a charging strategy or a time of activation. This controller might be
located at the device level (e.g., smart appliances) or integrated in a
building management system [47]. Three types of control strategies can
be identified: manual control by end-users, automated rule-based con-
trol, or advanced optimization techniques (e.g., MPC) [48]. Automatic
control can reduce user fatigue and improve participation in DR pro-
grams [49] and optimization allows building and equipment dynamics
to be taken into account as well as addressing multiple objectives. It
should be highlighted that end-users often prefer a degree of autonomy
over their energy use (e.g., by opting out or overruling the controller)
[50,51] and therefore, for the design of local control systems, a balance
should be found between robustness, effectiveness and simplicity, as
well as user preferences. Q7 offers more discussions on end-users.

In all of the aforementioned architectures, communication is the
cornerstone of DR programs. It can be one-way or two-way communi-
cation, wired or wireless and exploit smart-meters, the internet or home
area networks [47]. The adoption of protocols and standards is neces-
sary to enhance the development of DR programs at large scale (e.g.,
NIST smart-grid standard [52], OpenADR [53], SG ready label from the
German Heat Pump Association [54]).

Various challenges remain in the development of solutions for har-
nessing energy flexibility. Improved coordination is necessary to alle-
viate the peak rebound issue and improve the economic benefits of both
utilities and end-users. The development of local production and storage
systems will also reinforce the need for coordination and flexibility in
distributed systems [43]. Moreover, there is a need to better integrate
end-users in DR programs that balances adequate incentives, acceptable
level of service and equity [134,135].

2.4. Q4. How do multicarrier energy systems contribute to energy
flexibility?

Multicarrier energy systems combine different energy vectors, such
as electricity, gas, oil, biomass, and heat to provide services (e.g.,
heating, cooling, ventilation, appliances) to end-users [55]. Any
large-scale energy system (e.g., countrywide or energy market) can be
seen as a multicarrier system, as electricity and fossil fuels (e.g., gas, oil)
are typically present. The multicarrier energy systems that can
contribute to energy flexibility are characterized by redundancy in

providing selected energy services from different carriers (e.g., space
heating from electricity or from biomass) (see Fig. 2). They are some-
times referred to as “Multi-energy” systems, or less frequently as “hybrid
energy systems” [56]. Another typical multicarrier scenario is an elec-
trically driven air-source heat pump heating system combined with a
natural gas fired boiler, normally provided as insurance during very cold
weather periods; the boiler can be preferentially engaged during electric
grid stress events.

The redundancy between different carriers to provide a specific en-
ergy service renders multicarrier systems inherently flexible. Specif-
ically, switching between fuels allows them to respond to the needs of
the energy grids while maintaining the same level of service to the end-
user. This flexibility potential can be leveraged at the district level, as
discussed below, but also at the single building level. In the Canadian
province of Quebec for example, a “dual energy” electricity rate en-
courages switching from electric heating to an alternative heating
source (e.g., gas) when the outdoor temperature is below —12 °C [57].
This basic fuel-switching control strategy provides flexibility during
typical winter peaks caused by electrical heating. D’Ettore et al. [58]
analyzed the flexibility offered by hybrid heating systems combining an
air-source heat pump with a gas boiler and highlighted the importance
of using and correctly sizing a buffer tank to operate the heat pump more
efficiently and benefit from energy flexible buildings [16,56]. Combined
heat and power systems and power-to-heat conversion are the main
tools to convert energy between different carriers, and to utilize thermal
energy storage in order to increase flexibility [10,59].

At the community (or district) level, district energy systems are
excellent candidates to provide flexibility for the electric grid and ach-
ieve a larger share of variable renewable energy in their energy supply
[44,60]. Indeed, district energy systems can utilize the thermal storage
in the network itself for short-term storage, and they are often equipped
with thermal storage tanks providing flexibility for several hours [61].
Many district heating systems also include long-term (seasonal) thermal
storage when they are designed to integrate RES such as solar thermal
[62]. District energy systems themselves can benefit from the decen-
tralized storage present in connected buildings to leverage flexibility in
the heating supply [3]. This “heat” flexibility can then be harnessed to
optimize the operation of the district energy system and/or to provide
“electric” flexibility with power-to-heat conversion systems such as heat
pumps.

Historically, multicarrier systems have been modeled and analyzed
with the objective of reducing primary energy use, emissions, and cost
[63]. Recent research addresses designing and operating multicarrier
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Fig. 2. Multicarrier energy systems can provide the same energy services from different energy vectors (e.g., heating from electricity, district heating, and natural
gas). Energy flexibility can be harnessed from buildings themselves (e.g., via thermal mass, decentralized storage) and from centralized systems to maximize

renewable energy integration and minimize greenhouse gas emissions.

energy systems for maximum flexibility to enable a higher integration
level of variable RES at the neighborhood or urban level [64], in isolated
systems [65], and at the country level [66]. Flexibility can also help
integrate waste heat recovery and promote heat-sharing within a mul-
ticarrier system [67]. Achieving cost-efficient multicarrier energy sys-
tems requires coupling the different sectors not only at the energy level,
but also at the market level, which can be realized efficiently in a
centralized market or with a decentralized market per energy carrier
[68,69]. Multidisciplinary research programs are required to address
their technical complexity (design and control), economic challenges
(market integration), and societal challenges (policies, regulations, and
social equity), as discussed further in Q7-9.

2.5. Q5. Can energy flexible buildings contribute to energy system
resilience?

Resilience is defined as the ability to be prepared, absorb, adapt and
quickly recover from an adverse event [70]. An emergency or an adverse
event is understood as a temporary event that poses additional stress to
the urban energy systems. High stress can be observed directly in
buildings during extreme climate events (e.g., heat waves [71], cold
snaps or storms [72]). Adverse events may also affect grids with
increased magnitude and duration of the peak loads, reduction of
renewable energy generation and degradation or “interruption” of
conventional energy supply systems. Increased stress can lead to a sys-
tem failure (i.e., a “shock” or “short-run shock” event), a blackout or
power outage, that may have important effects on day-to-day living and
in the longer term the economy [73]. In this context, survivability is
adopted as an indicator that expresses the probability that a building can
be continuously powered from locally produced and stored energy
during a grid failure. Broadly speaking, emergency situations that may
drastically affect access to energy and well-being in our societies,
especially to vulnerable populations, are the climate or health crisis
[74], which have different spatial or temporal scales than local short and
extreme shocks.

In future low-carbon energy systems, energy flexible buildings,
ranging from individual buildings to clusters of buildings, need to adapt
their operation to a range of environmental variations including the
needs of the grid. Flexible buildings are naturally more resilient by
providing habitable indoor conditions for longer periods of time under
adverse or emergency events [75]. The enhancement of flexibility based
on management of passive and active thermal storage, on-site renewable
generation and demand controllable facilities increases the resilience of
the systems.

Resilience, especially when assessed in terms of survivability, is
typically associated with the building’s ability to change the electricity
use during a demand-response or adverse weather event. If a building
can maintain occupant comfort, known as passive survivability [76],
during a power outage, it will obviously be capable of lowering its
electricity use during the same period. Local energy storage, whether
thermal or electrical, is the key factor enabling both flexibility and

resilience. There is a close and often inverse relationship between
resilience and flexibility, since control strategies aiming to increase
resilience (i.e., reserving battery capacity for backup) can decrease the
flexibility the building can provide. For example, the control strategy
adopted for a photovoltaic system with battery storage will have an
impact on the upward flexibility (ability to use more electricity) and on
the downward flexibility (ability to use less electricity or no electricity at
all), the latter being closely related to survivability and resilience [77,
78]. Weather-related power outages can often be predicted [79], so
control strategies could be adapted from “maximum flexibility” to
“maximum resilience” in some cases.

Increasing building resilience without limiting energy flexibility may
be accomplished beyond individual buildings supplied by only one en-
ergy carrier to multi-carrier energy systems or groups of buildings at
community scale. In the case of multicarrier energy systems, the energy
flexibility comes from redundancy between energy vectors to provide
the same energy service (e.g., electric heating and gas-fired heating). In
these systems, energy flexibility and resilience go hand-in-hand if the
considered outage only affects one of the energy vectors. These systems
are necessarily associated with higher capital costs to provide the
redundancy, but their economic viability could be improved if the
economic value of resilience was considered in the analysis [80].

Moving from the single building scale to the building cluster scale,
several studies show the benefits that control strategies aiming to in-
crease demand flexibility and resilience under extreme events may
achieve. Nik and Moazami [81] investigated how the implementation of
collective intelligence, that controls groups of buildings in Stockholm, is
effective to decrease energy demand up to 44% and absorb the shock
during extreme weather events compared with the case without intel-
ligence. Mar et al. investigated management strategies to maintain
user’s needs in an energy community with PV generation and houses
with non-controllable and controllable devices while maintaining the
community network operation during temporary reduction of available
grid power [82].

2.6. Q6 Who are the stakeholders involved in energy flexibility?

Numerous stakeholders are involved in the nexus of energy flexi-
bility and buildings. The stakeholders range from the large central en-
ergy utilities, grid operators and downstream through distribution
system operators (DSOs) to individual consumers. With the transition to
a smart energy system, including the development of new energy flex-
ibility services, the emergence of new market actors such as distributed
services aggregators, decentralized energy producers (e.g., prosumers),
and services market operators is unfolding [83]. In addition, as the en-
ergy sector is highly regulated, policymakers, such as national govern-
ments, and supranational entities, such as the EU, also play a key role in
defining the framework conditions for the development within the en-
ergy sector. For example, an EU regulation that requires unbundling of
energy supply and generation from transmission networks, and
third-party access [84]. Another trend is the decentralization of energy
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production, especially within the electricity sector, which drives a
transition to a less hierarchical organized energy system and gives rise to
a more diverse and complex set of stakeholders [85]. Other stakeholders
include distributed services aggregators and energy service companies
(ESCOs) that further complicate stakeholder interactions [86].

The complexity of stakeholders increases further if one considers
end-users because energy consumers represent a diversity of conditions
and motivations for participating in energy flexibility services. Con-
sumers differ in terms of their size of consumption and how large their
potential for supplying energy flexibility are, as well as in terms of
ownership and organization. Consequently, the conditions differ highly
between commercial, public and private households; within these types
of consumers there is a wide variety of types (e.g., between office
buildings and industries for the commercial consumers, or between
apartment buildings and individual detached homes for residential
consumers [87,88]).

An effective utilization of energy flexibility in buildings will require
an alignment across stakeholders with regard to technical and com-
mercial activities. This will require moving beyond the tendency of
stakeholders to mainly pursue their own interests and existing business
models to the active involvement of policymakers through regulation, as
well as to enhanced collaboration between stakeholders on creating
shared visions and understanding of the future energy flexible system
[86]. The discussion of extracting values for different stakeholders from
energy flexibility is continued in Q9.

2.7. Q7 What new approaches to the design of energy flexibility solutions
can increase user engagement?

T wo different, and partly competing, conceptualizations of the role
of the energy consumer in the future flexible energy systems exist within
the smart energy field [89,90]. One emphasizes the active participation
of energy consumers, who are expected to adjust the timing of their
consumption on a continuous basis (e.g., according to price signals from
the grid). The other emphasizes that demand response should be
executed through automated solutions and/or remote control by grid
operators or others, and the energy consumer is seen as a passive
participant, who is primarily involved when accepting the control pro-
gram. Both conceptualizations have opportunities and limitations. First,
the idea of active participation of energy users opens for a broader
application of flexible energy use, as the range of consumption types
available for automated or remote control is limited. Often, there is a
close link between energy consumption and performance of practices (e.
g., cooking), which makes active participation of consumers necessary.
However, studies have also demonstrated that it is difficult to ensure
consumers’ long-term participation in demand response programs [91].
Second, automation or remote control may enable customer response to
more granular locational and temporal pricing.

Evidence shows that voluntary active participation by energy con-
sumers does happen in certain situations (e.g. for households with
micro-generation such as rooftop solar PV). Such households are often
named “prosumers”, and studies show that micro-generation motivates
many households to optimize their utilization of their own energy
through time shifting, i.e., changing the time of their consumption
[92-96]. Monetary savings play a role here, but also other elements are
important, such as the positive feeling of consuming one’s own energy,
energy independence and concerns for the environment [94,95,97]. The
latter supports the critique raised by Strengers [98] that existing ap-
proaches within smart energy tend to exaggerate the importance of
economic motivation in their (often tacit) assumptions about energy
consumers’ behavior. Therefore, many smart grid designs are guided by
a misleading understanding of the individual energy consumer as “an
efficient and well-informed micro-resource manager who exercises
control and choice over his consumption and energy options’’ (ibid.:
34-35). In addition, there seems to be a ’strong engineering bias with a
focus on new information and communication technologies,
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disregarding their interaction with other technological and social as-
pects of local energy systems” [99]. This leads to technical designs that
do not fit well with the needs and practices of the users (see also [100]).
Instead, these authors argue for a broader understanding of the energy
practices, which also takes into account how the behavior of energy
users are dependent on material elements (such as the design of build-
ings), the users’ competences and the meanings associated with
energy-consuming practices and new habits of demand response (e.g.
Refs. [90,98]). This is in particular important to consider for those so-
lutions aimed at involving energy users as active participants in demand
response actions.

Researchers have suggested involving users more actively by
applying co-design methods in the designing of smart grids and energy
flexibility solutions (e.g. Ref. [101]). Even if users are partly involved in
the design phase of some smart grid developments, the more systematic
and comprehensive involvement of them is still rare [99]. Therefore,
methods from co-creation and participatory design methods are worth
considering. The core idea of these design approaches is to involve the
prospective users of a given technology much more extensively in the
design phase than is typically done today [102]. For instance, this can
happen through a series of co-creation workshops with participation of
designers, technology developers and users. Often, such design events
involve the use of tools like design probes etc. to facilitate the process.
Through this, end-users are engaged as active “co-creators” of in-
novations [103]. The main goal of applying such methods is to integrate
the perspective and needs of end-users in the final solutions and in this
way ensure that these will fit with their daily habits and needs [104]. A
limited number of studies apply co-creation and participatory design
methods in the design of demand response solutions. Among the studies
are experiments where researchers have involved citizens actively in
changing their energy consumption patterns through changes in their
everyday routines and practices. For example [136], developed a solu-
tion combining digital feedback and automatic heating control with
simple “low-tech” material designs such as “heating bags”, which
included heat-retaining pouches affixed to the radiators. The latter
complemented the automated control with the possibility for the par-
ticipants to maintain thermal comfort during periods with heat setback.
Another example is the use of a social practice theory-inspired living lab
approach by Ref. [137] that changed practices of doing laundry and
maintaining comfort through challenging people’s established routines
and norms. A third example is how participatory design methods were
used to establish continuous communication between technical de-
velopers and the local community in a Chilean microgrid project and
ensuring that the final technical solution was tailored to the local
context and needs [138]. However, as these limited examples indicate,
attempts to more specifically apply co-creation and participatory design
methods in developing demand response solutions is an opportunity for
further exploration.

2.8. Q8 How should energy performance standards and requirements be
adapted to support building energy flexibility?

Energy performance goals have historically been based on targets for
energy reductions and optimal design of systems. There is a need to
modify existing goals or develop new ones to avoid penalizing energy
flexibility that may not necessarily result in net reductions in energy
consumption over certain timescales. Energy flexibility is also affected
by the operation of energy systems and not only relative to simulated
levels. Energy efficiency and energy flexibility are two targets that have
to be viewed as complementary and deployed in an integrated strategy
to address energy and climate challenges [5,7]. A recent study showed
that the co-deployment of energy efficiency and flexibility measures in
building yields large reductions in peak electricity demand [7].
Although efficiency may reduce the load available for shifting to low
emission hours, it also reduces the need to use fossil fuel plants to supply
peak demand. The two measures combined can help grid operators
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avoid or defer investments in new fossil-fueled plants and energy storage
deployments to support the integration of variable renewable energy
[7]. Accordingly, future buildings and districts have to be designed with
a focus on both energy efficiency and flexibility [14,15]. Therefore, it is
important to develop solutions and standards that focus on reduction of
greenhouse gas emissions as a common target.

Most energy performance standards focus on the static energy needs
in buildings in terms of an annual energy requirement. Even though
many countries base their energy performance calculations on dynamic
simulations, the end result is still an annual energy requirement (i.e., no
time dependency of the energy use) [105]. Energy performance certifi-
cation (EPC) of buildings is most often based on the calculated perfor-
mance according to the standards. However, some countries base their
EPC on measured energy, and in these cases, flexibility offered to the
energy supply may influence the EPC in any direction.

There are limited examples of energy flexibility in building codes and
standards. The ASHRAE 90.1 standard includes an "Energy Cost Budget"
method to demonstrate compliance [106]. If cost accounts for a "pen-
alty" similar to the flexibility penalty, that is an indirect way to include
energy flexibility in the building’s energy performance. Additionally,
the EU Energy Performance of Buildings Directive (EPBD) defines an
optional smart readiness indicator: "The smart readiness rating shall be
based on an assessment of the capabilities of a building or building unit to
adapt its operation to the needs of the occupant and the grid and to improve its
energy efficiency and overall performance" [34s]. The intent of the smart
readiness rating is to ensure that future buildings and buildings under-
going major renovation can provide some kind of flexibility to con-
nected energy supply systems. There is, however, no indication of how
this can and should work in conjunction with the building energy per-
formance requirements.

Therefore, there is a need to ensure that requirements, energy per-
formance standards and energy flexibility complement each other to
achieve a low-carbon future [133]. Solutions may include strategies,
controls, and technologies that can address competition with existing
energy performance requirements and changes to energy performance
assessments and/or codes and standards that incorporate energy flexi-
bility. One such solution could be a shift towards CO2 emission re-
quirements rather than energy performance requirements in the
operational phase of a building’s life. This goes hand in hand with
emerging requirements for life cycle CO2 emissions (Life Cycle Analyses,
LCA) from a building over its lifetime (i.e., the construction, operation,
and demolishing phase of a building’s life). The CO2 emissions during a
building’s operational phase will be influenced by its flexibility to en-
ergy in periods with low CO2 emissions from the connected grids.
Flexible buildings should thus have an advantage from non-flexible ones
in terms of CO2 emissions during the operational phase. Such emerging
requirements are seen in several countries [131,132] and suggested in a
recent proposed recast of the European EPBD, to be decided upon in late
2022. These initial CO2 requirements are based on static estimates of the
CO2 emissions during the operational phase. Therefore, a shift towards
rewarding and incentivizing flexibility is needed to push increased
deployment in buildings.

Introduction of price signals, and controls that are able to react
intelligently on the signals, will be valuable tools to achieve the goal
offering flexibility from buildings to the energy supply. Additionally,
carbon-neutral goals established for a portfolio of electric and non-
electric resources can support energy flexibility in district heating sys-
tems or broader beneficial electrification [107]. Finally, the develop-
ment and adoption of interoperability standards, especially at the
semantic level, is necessary to reduce the costs of energy
flexibility-enabling technologies and the complexity of managing energy
performance and flexibility from multiple end-uses [108].

Building and Environment 223 (2022) 109461

2.9. Q9 What business models can successfully develop and utilize energy
flexibility?

Successfully engaging consumers to realize the benefits of building
energy flexibility will require several different entities to form business
models that manage specific financial and performance risks and profit
from the financial opportunities. Entities that are likely to play an
important role in delivering energy flexibility solutions to customers
include electric utilities, district heating companies, ESCOs, and aggre-
gators [109]. Electric utilities, particularly DSOs are often the primary
interface for customer energy consumption and management and are
increasingly offering energy flexibility products, as well as data and
communications services that support energy flexibility [110]. District
heating networks do in many respects have the same challenges as
electric grids, but with a built-in storage capacity and with peak loads
primarily dictated by weather, which can be foreseen. There are though
large saving potentials in operating with the lowest possible flow tem-
perature at any time [111,112]. In addition to electric utilities, ESCOs
deliver and finance a range of building energy management solutions
that increasingly include renewable generation and energy storage
[113] and aggregators typically specialize in assembling a portfolio of
energy flexibility resources from multiple customers and bid flexible
load into electricity markets similar to traditional power plants [114].

The opportunities for businesses to profit from energy flexibility
typically arise from addressing the complexities and risks of energy
management, which produces customer financial and operational ben-
efits (e.g., bill savings, improved productivity). For example, entities
may provide software and advisory services to customers to design
optimal energy flexibility systems and integrate complex technology and
controls systems, as well as directly control building loads and bid into
wholesale electricity markets. Additional financial opportunities for
energy flexibility business models include managing changes in market
rules and tariffs, minimizing penalties for under-performance, and
enrollment and participation in incentive programs.

Energy flexibility business models are generally characterized by
their value proposition, value creation and delivery, and value capture
[115]. The value proposition is defined by the energy flexibility objec-
tive (e.g., customer bill savings, grid-connected resource for managing
distribution network, increased customer resilience) and includes the
scope and type of energy flexibility solutions that are offered (e.g., en-
ergy shifting and load shedding capabilities, integrated building and
distributed generation/storage), as well as customer segments. Value
creation and delivery is based on strategies for responding to grid and/or
price signals (e.g., shifting load from peak price periods to low price
periods) with important consideration of roles and responsibilities (e.g.,
customer interface, building controls management). Finally, the extent
to which customers capture value depends on how successfully the
business model employs energy flexibility strategies and the sharing of
costs and benefits between customers and businesses based on revenue
models, customer remuneration, cost structures, and asset ownership
[116].

Energy flexibility business models rely heavily on customer building
technologies and customer economics are driven by the high-upfront
costs of building control technologies and efficient end-use appliances
that typically result in long-term payback periods [117]. Business
models that can scale across multiple buildings, energy flexibility
technologies (e.g., integrated buildings and storage), and services may
solve customer adoption challenges by reducing certain costs and
maximizing, or more widely distributing, value. For example,
multi-building approaches can achieve capital cost savings through bulk
purchasing and streamlined installation, as well as increased revenues
by enabling participation in multiple market products and opportunities
(e.g., wholesale capacity markets, ancillary services markets) [118].
Aggregators may communicate grid signals from system operators to
multiple buildings, thereby absorbing and managing the transaction
costs and operational complexity that the system operator would
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otherwise incur when interacting with numerous individual buildings
[119]. Relatedly, aggregators may offer customers energy market
hedging services to minimize price risks and stabilize customer energy
costs and bundle services across electricity and other energy markets
[114]. Utilities may also successfully scale services to increase energy
flexibility deployment especially when complementary to existing ser-
vices (e.g., adding customer financial incentives for building load flex-
ibility technologies and measures to existing energy efficiency
programs) [120].

2.10. Q10 How can policy evolution support the future deployment of
energy flexibility?

Policy support is necessary to increase energy flexibility deployment
and realize its societal and economic benefits, and may include building
technology performance standards, mandated targets and goals for
flexible grid resources, and funding mechanisms for basic research and
design or to increase customer adoption, among many others. Decision-
makers, including policymakers and regulators, therefore, play a critical
role in creating and sustaining energy flexibility opportunities.

A wide array of approaches is necessary given the breadth of insti-
tutional contexts and activities that govern energy systems [47]. At the
supranational and national levels, policymakers may establish explicit
goals and targets for energy flexibility deployment. As examples, the US
Department of Energy aims to triple both the efficiency and flexibility of
residential and commercial buildings by 2030 relative to 2020 levels
[23]. Likewise, the European Union has a binding target for 2030 to
have at least 40% renewable energy in the energy mix, which needs to be
accompanied by increased flexibility to take up variations in production
[121]. Additionally, energy flexibility has been identified as a key
strategy to meet national net zero GHG emissions targets (e.g., UK goal
to reach net zero emissions domestic economy-wide by 2050 relative to
1990 levels) [122].

Given the highly-regulated nature of electricity systems, especially at
the state and municipal levels, there are several areas in which regula-
tors can address barriers to energy flexibility deployment. For example,
in the US, some states have building energy codes and appliance and
equipment standards that incorporate flexibility [123] and are often
more ambitious than minimum codes and standards established at the
national level. Regulatory processes for electric utilities are also an
important context, especially in the US that does not have overarching
policy for or regulation of retail electricity markets. For example, state
utility regulators can authorize time-varying retail electricity prices that
increase the value of energy flexibility for customers [124]. Pricing re-
forms that reflect the costs of environmental externalities and/or carbon
intensity of energy may facilitate energy flexibility programs for both
economic and environmental improvement [125]. Other electric system
regulatory processes that can address barriers to energy flexibility
include incorporating energy flexibility into electricity system planning,
time-sensitive economic valuation of energy flexibility, and authoriza-
tion of advanced metering infrastructure that enables two-way
communication between buildings and electricity system operators
[123].

The most successful policy evolutions to date are regulatory and/or
market designs that establish explicit opportunities for energy flexibility
and incentivize aggregators, utilities, developers, and other entities to
deliver energy flexibility. For example, the Texas wholesale electricity
market has separate balancing services products that enable participa-
tion of building end-uses with asymmetrical capabilities for balancing
up and down [126]. California state utility regulators created the De-
mand Response Auction Mechanism to create retail market opportu-
nities for energy flexibility companies with a minimum 100 kW scale of
aggregated resources, including flexible building technologies,
behind-the-meter storage, and electric vehicles. The mechanism has
been successful at attracting new companies and developing opportu-
nities for aggregating residential customer energy flexibility resources,
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which is an emerging opportunity [127].

Finally, decision-makers can support energy flexibility deployment
through regulatory and policy approaches that reduce the costs of con-
trols, packaged solutions, and other emerging building technologies (e.
g., thermal energy storage). There are complementary effects of sup-
portive policies and technological improvements that can drive cost
reductions via technology interoperability and economies of scale [128].
Additionally, investments in customer automation and control tech-
nologies can enhance the value of flexibility for distribution systems
[129]. Novel financing mechanisms that overcome high upfront capital
costs have attracted significant loan volume for energy efficiency [130]
and could be leveraged to increase adoption of energy flexibility
technologies.

3. Conclusions

Energy flexibility promises to be a cost-effective solution to enhance
and strengthen the operation of the energy system by facilitating a
greater penetration of renewable energy resources. To that end, a wide
range of thermostatically controlled loads, electrical or thermal energy
storage devices, electrical appliances, and multi-energy consumption
devices are available to unlock energy flexibility in buildings. In terms of
their ability to be prepared, absorb, adapt, and quickly recover from
adverse events, flexible buildings offer higher levels of resilience, as they
are designed to manage their systems and storage facilities to adapt to
several objectives. The most promising opportunities for energy flexi-
bility are in clusters of buildings and multicarrier energy systems. Based
on the questions and answers discussed in this article, we identified the
following research opportunities to enable widespread deployment of
energy flexibility.

1. Extension of existing data-driven energy flexibility characterization
methodologies to an aggregated level, considering the requirements
from different stakeholders.

2. Supervisory controls that can respond to grid signals to avoid unin-
tended consequences (e.g., peak rebounds, reduce occupancy com-
fort) at the building- and grid-levels.

3. More sophisticated building modeling and control algorithms that
integrate efficiency and flexibility, and also incorporate un-
certainties in load, distributed (behind-the-meter) generation, and
customer behavior.

4. Multidisciplinary approaches to address the technical, economical,
and societal complexity of multicarrier energy systems and stake-
holder relationships, and exploit their full potential to harness en-
ergy flexibility.

5. Design of flexible buildings systems and controls that may contribute
to more resilient systems when it is needed.

6. Policy/regulatory frameworks that modify existing or create new
energy performance standards that do not penalize flexibility.

7. Business models that can scale energy flexibility across multiple
buildings and technologies.

8. Policy support to reduce technology costs (e.g., either through direct
R&D funding or economies of scale).
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